Welcome to Subscribe On Youtube

3086. Minimum Moves to Pick K Ones

Description

You are given a binary array nums of length n, a positive integer k and a non-negative integer maxChanges.

Alice plays a game, where the goal is for Alice to pick up k ones from nums using the minimum number of moves. When the game starts, Alice picks up any index aliceIndex in the range [0, n - 1] and stands there. If nums[aliceIndex] == 1 , Alice picks up the one and nums[aliceIndex] becomes 0(this does not count as a move). After this, Alice can make any number of moves (including zero) where in each move Alice must perform exactly one of the following actions:

  • Select any index j != aliceIndex such that nums[j] == 0 and set nums[j] = 1. This action can be performed at most maxChanges times.
  • Select any two adjacent indices x and y (\|x - y\| == 1) such that nums[x] == 1, nums[y] == 0, then swap their values (set nums[y] = 1 and nums[x] = 0). If y == aliceIndex, Alice picks up the one after this move and nums[y] becomes 0.

Return the minimum number of moves required by Alice to pick exactly k ones.

 

Example 1:

Input: nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1

Output: 3

Explanation: Alice can pick up 3 ones in 3 moves, if Alice performs the following actions in each move when standing at aliceIndex == 1:

  •  At the start of the game Alice picks up the one and nums[1] becomes 0. nums becomes [1,1,1,0,0,1,1,0,0,1].
  • Select j == 2 and perform an action of the first type. nums becomes [1,0,1,0,0,1,1,0,0,1]
  • Select x == 2 and y == 1, and perform an action of the second type. nums becomes [1,1,0,0,0,1,1,0,0,1]. As y == aliceIndex, Alice picks up the one and nums becomes [1,0,0,0,0,1,1,0,0,1].
  • Select x == 0 and y == 1, and perform an action of the second type. nums becomes [0,1,0,0,0,1,1,0,0,1]. As y == aliceIndex, Alice picks up the one and nums becomes [0,0,0,0,0,1,1,0,0,1].

Note that it may be possible for Alice to pick up 3 ones using some other sequence of 3 moves.

Example 2:

Input: nums = [0,0,0,0], k = 2, maxChanges = 3

Output: 4

Explanation: Alice can pick up 2 ones in 4 moves, if Alice performs the following actions in each move when standing at aliceIndex == 0:

  • Select j == 1 and perform an action of the first type. nums becomes [0,1,0,0].
  • Select x == 1 and y == 0, and perform an action of the second type. nums becomes [1,0,0,0]. As y == aliceIndex, Alice picks up the one and nums becomes [0,0,0,0].
  • Select j == 1 again and perform an action of the first type. nums becomes [0,1,0,0].
  • Select x == 1 and y == 0 again, and perform an action of the second type. nums becomes [1,0,0,0]. As y == aliceIndex, Alice picks up the one and nums becomes [0,0,0,0].

 

Constraints:

  • 2 <= n <= 105
  • 0 <= nums[i] <= 1
  • 1 <= k <= 105
  • 0 <= maxChanges <= 105
  • maxChanges + sum(nums) >= k

Solutions

Solution 1

  • class Solution {
        public long minimumMoves(int[] nums, int k, int maxChanges) {
            int n = nums.length;
            int[] cnt = new int[n + 1];
            long[] s = new long[n + 1];
            for (int i = 1; i <= n; ++i) {
                cnt[i] = cnt[i - 1] + nums[i - 1];
                s[i] = s[i - 1] + i * nums[i - 1];
            }
            long ans = Long.MAX_VALUE;
            for (int i = 1; i <= n; ++i) {
                long t = 0;
                int need = k - nums[i - 1];
                for (int j = i - 1; j <= i + 1; j += 2) {
                    if (need > 0 && 1 <= j && j <= n && nums[j - 1] == 1) {
                        --need;
                        ++t;
                    }
                }
                int c = Math.min(need, maxChanges);
                need -= c;
                t += c * 2;
                if (need <= 0) {
                    ans = Math.min(ans, t);
                    continue;
                }
                int l = 2, r = Math.max(i - 1, n - i);
                while (l <= r) {
                    int mid = (l + r) >> 1;
                    int l1 = Math.max(1, i - mid), r1 = Math.max(0, i - 2);
                    int l2 = Math.min(n + 1, i + 2), r2 = Math.min(n, i + mid);
                    int c1 = cnt[r1] - cnt[l1 - 1];
                    int c2 = cnt[r2] - cnt[l2 - 1];
                    if (c1 + c2 >= need) {
                        long t1 = 1L * c1 * i - (s[r1] - s[l1 - 1]);
                        long t2 = s[r2] - s[l2 - 1] - 1L * c2 * i;
                        ans = Math.min(ans, t + t1 + t2);
                        r = mid - 1;
                    } else {
                        l = mid + 1;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        long long minimumMoves(vector<int>& nums, int k, int maxChanges) {
            int n = nums.size();
            vector<int> cnt(n + 1, 0);
            vector<long long> s(n + 1, 0);
    
            for (int i = 1; i <= n; ++i) {
                cnt[i] = cnt[i - 1] + nums[i - 1];
                s[i] = s[i - 1] + 1LL * i * nums[i - 1];
            }
    
            long long ans = LLONG_MAX;
    
            for (int i = 1; i <= n; ++i) {
                long long t = 0;
                int need = k - nums[i - 1];
    
                for (int j = i - 1; j <= i + 1; j += 2) {
                    if (need > 0 && 1 <= j && j <= n && nums[j - 1] == 1) {
                        --need;
                        ++t;
                    }
                }
    
                int c = min(need, maxChanges);
                need -= c;
                t += c * 2;
    
                if (need <= 0) {
                    ans = min(ans, t);
                    continue;
                }
    
                int l = 2, r = max(i - 1, n - i);
    
                while (l <= r) {
                    int mid = (l + r) / 2;
                    int l1 = max(1, i - mid), r1 = max(0, i - 2);
                    int l2 = min(n + 1, i + 2), r2 = min(n, i + mid);
    
                    int c1 = cnt[r1] - cnt[l1 - 1];
                    int c2 = cnt[r2] - cnt[l2 - 1];
    
                    if (c1 + c2 >= need) {
                        long long t1 = 1LL * c1 * i - (s[r1] - s[l1 - 1]);
                        long long t2 = s[r2] - s[l2 - 1] - 1LL * c2 * i;
                        ans = min(ans, t + t1 + t2);
                        r = mid - 1;
                    } else {
                        l = mid + 1;
                    }
                }
            }
    
            return ans;
        }
    };
    
  • class Solution:
        def minimumMoves(self, nums: List[int], k: int, maxChanges: int) -> int:
            n = len(nums)
            cnt = [0] * (n + 1)
            s = [0] * (n + 1)
            for i, x in enumerate(nums, 1):
                cnt[i] = cnt[i - 1] + x
                s[i] = s[i - 1] + i * x
            ans = inf
            max = lambda x, y: x if x > y else y
            min = lambda x, y: x if x < y else y
            for i, x in enumerate(nums, 1):
                t = 0
                need = k - x
                for j in (i - 1, i + 1):
                    if need > 0 and 1 <= j <= n and nums[j - 1] == 1:
                        need -= 1
                        t += 1
                c = min(need, maxChanges)
                need -= c
                t += c * 2
                if need <= 0:
                    ans = min(ans, t)
                    continue
                l, r = 2, max(i - 1, n - i)
                while l <= r:
                    mid = (l + r) >> 1
                    l1, r1 = max(1, i - mid), max(0, i - 2)
                    l2, r2 = min(n + 1, i + 2), min(n, i + mid)
                    c1 = cnt[r1] - cnt[l1 - 1]
                    c2 = cnt[r2] - cnt[l2 - 1]
                    if c1 + c2 >= need:
                        t1 = c1 * i - (s[r1] - s[l1 - 1])
                        t2 = s[r2] - s[l2 - 1] - c2 * i
                        ans = min(ans, t + t1 + t2)
                        r = mid - 1
                    else:
                        l = mid + 1
            return ans
    
    
  • func minimumMoves(nums []int, k int, maxChanges int) int64 {
    	n := len(nums)
    	cnt := make([]int, n+1)
    	s := make([]int, n+1)
    
    	for i := 1; i <= n; i++ {
    		cnt[i] = cnt[i-1] + nums[i-1]
    		s[i] = s[i-1] + i*nums[i-1]
    	}
    
    	ans := math.MaxInt64
    
    	for i := 1; i <= n; i++ {
    		t := 0
    		need := k - nums[i-1]
    
    		for _, j := range []int{i - 1, i + 1} {
    			if need > 0 && 1 <= j && j <= n && nums[j-1] == 1 {
    				need--
    				t++
    			}
    		}
    
    		c := min(need, maxChanges)
    		need -= c
    		t += c * 2
    
    		if need <= 0 {
    			ans = min(ans, t)
    			continue
    		}
    
    		l, r := 2, max(i-1, n-i)
    
    		for l <= r {
    			mid := (l + r) >> 1
    			l1, r1 := max(1, i-mid), max(0, i-2)
    			l2, r2 := min(n+1, i+2), min(n, i+mid)
    
    			c1 := cnt[r1] - cnt[l1-1]
    			c2 := cnt[r2] - cnt[l2-1]
    
    			if c1+c2 >= need {
    				t1 := c1*i - (s[r1] - s[l1-1])
    				t2 := s[r2] - s[l2-1] - c2*i
    				ans = min(ans, t+t1+t2)
    				r = mid - 1
    			} else {
    				l = mid + 1
    			}
    		}
    	}
    
    	return int64(ans)
    }
    
  • function minimumMoves(nums: number[], k: number, maxChanges: number): number {
        const n = nums.length;
        const cnt = Array(n + 1).fill(0);
        const s = Array(n + 1).fill(0);
    
        for (let i = 1; i <= n; i++) {
            cnt[i] = cnt[i - 1] + nums[i - 1];
            s[i] = s[i - 1] + i * nums[i - 1];
        }
    
        let ans = Infinity;
        for (let i = 1; i <= n; i++) {
            let t = 0;
            let need = k - nums[i - 1];
    
            for (let j of [i - 1, i + 1]) {
                if (need > 0 && 1 <= j && j <= n && nums[j - 1] === 1) {
                    need--;
                    t++;
                }
            }
    
            const c = Math.min(need, maxChanges);
            need -= c;
            t += c * 2;
    
            if (need <= 0) {
                ans = Math.min(ans, t);
                continue;
            }
    
            let l = 2,
                r = Math.max(i - 1, n - i);
    
            while (l <= r) {
                const mid = (l + r) >> 1;
                const [l1, r1] = [Math.max(1, i - mid), Math.max(0, i - 2)];
                const [l2, r2] = [Math.min(n + 1, i + 2), Math.min(n, i + mid)];
    
                const c1 = cnt[r1] - cnt[l1 - 1];
                const c2 = cnt[r2] - cnt[l2 - 1];
    
                if (c1 + c2 >= need) {
                    const t1 = c1 * i - (s[r1] - s[l1 - 1]);
                    const t2 = s[r2] - s[l2 - 1] - c2 * i;
                    ans = Math.min(ans, t + t1 + t2);
                    r = mid - 1;
                } else {
                    l = mid + 1;
                }
            }
        }
    
        return ans;
    }
    
    

All Problems

All Solutions