Welcome to Subscribe On Youtube
2478. Number of Beautiful Partitions
Description
You are given a string s
that consists of the digits '1'
to '9'
and two integers k
and minLength
.
A partition of s
is called beautiful if:
s
is partitioned intok
non-intersecting substrings.- Each substring has a length of at least
minLength
. - Each substring starts with a prime digit and ends with a non-prime digit. Prime digits are
'2'
,'3'
,'5'
, and'7'
, and the rest of the digits are non-prime.
Return the number of beautiful partitions of s
. Since the answer may be very large, return it modulo 109 + 7
.
A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "23542185131", k = 3, minLength = 2 Output: 3 Explanation: There exists three ways to create a beautiful partition: "2354 | 218 | 5131" "2354 | 21851 | 31" "2354218 | 51 | 31"
Example 2:
Input: s = "23542185131", k = 3, minLength = 3 Output: 1 Explanation: There exists one way to create a beautiful partition: "2354 | 218 | 5131".
Example 3:
Input: s = "3312958", k = 3, minLength = 1 Output: 1 Explanation: There exists one way to create a beautiful partition: "331 | 29 | 58".
Constraints:
1 <= k, minLength <= s.length <= 1000
s
consists of the digits'1'
to'9'
.
Solutions
-
class Solution { private static final int MOD = (int) 1e9 + 7; public int beautifulPartitions(String s, int k, int minLength) { int n = s.length(); if (!prime(s.charAt(0)) || prime(s.charAt(n - 1))) { return 0; } int[][] f = new int[n + 1][k + 1]; int[][] g = new int[n + 1][k + 1]; f[0][0] = 1; g[0][0] = 1; for (int i = 1; i <= n; ++i) { if (i >= minLength && !prime(s.charAt(i - 1)) && (i == n || prime(s.charAt(i)))) { for (int j = 1; j <= k; ++j) { f[i][j] = g[i - minLength][j - 1]; } } for (int j = 0; j <= k; ++j) { g[i][j] = (g[i - 1][j] + f[i][j]) % MOD; } } return f[n][k]; } private boolean prime(char c) { return c == '2' || c == '3' || c == '5' || c == '7'; } }
-
class Solution { public: const int mod = 1e9 + 7; int beautifulPartitions(string s, int k, int minLength) { int n = s.size(); auto prime = [](char c) { return c == '2' || c == '3' || c == '5' || c == '7'; }; if (!prime(s[0]) || prime(s[n - 1])) return 0; vector<vector<int>> f(n + 1, vector<int>(k + 1)); vector<vector<int>> g(n + 1, vector<int>(k + 1)); f[0][0] = g[0][0] = 1; for (int i = 1; i <= n; ++i) { if (i >= minLength && !prime(s[i - 1]) && (i == n || prime(s[i]))) { for (int j = 1; j <= k; ++j) { f[i][j] = g[i - minLength][j - 1]; } } for (int j = 0; j <= k; ++j) { g[i][j] = (g[i - 1][j] + f[i][j]) % mod; } } return f[n][k]; } };
-
class Solution: def beautifulPartitions(self, s: str, k: int, minLength: int) -> int: primes = '2357' if s[0] not in primes or s[-1] in primes: return 0 mod = 10**9 + 7 n = len(s) f = [[0] * (k + 1) for _ in range(n + 1)] g = [[0] * (k + 1) for _ in range(n + 1)] f[0][0] = g[0][0] = 1 for i, c in enumerate(s, 1): if i >= minLength and c not in primes and (i == n or s[i] in primes): for j in range(1, k + 1): f[i][j] = g[i - minLength][j - 1] for j in range(k + 1): g[i][j] = (g[i - 1][j] + f[i][j]) % mod return f[n][k]
-
func beautifulPartitions(s string, k int, minLength int) int { prime := func(c byte) bool { return c == '2' || c == '3' || c == '5' || c == '7' } n := len(s) if !prime(s[0]) || prime(s[n-1]) { return 0 } const mod int = 1e9 + 7 f := make([][]int, n+1) g := make([][]int, n+1) for i := range f { f[i] = make([]int, k+1) g[i] = make([]int, k+1) } f[0][0], g[0][0] = 1, 1 for i := 1; i <= n; i++ { if i >= minLength && !prime(s[i-1]) && (i == n || prime(s[i])) { for j := 1; j <= k; j++ { f[i][j] = g[i-minLength][j-1] } } for j := 0; j <= k; j++ { g[i][j] = (g[i-1][j] + f[i][j]) % mod } } return f[n][k] }
-
function beautifulPartitions(s: string, k: number, minLength: number): number { const prime = (c: string): boolean => { return c === '2' || c === '3' || c === '5' || c === '7'; }; const n: number = s.length; if (!prime(s[0]) || prime(s[n - 1])) return 0; const f: number[][] = new Array(n + 1).fill(0).map(() => new Array(k + 1).fill(0)); const g: number[][] = new Array(n + 1).fill(0).map(() => new Array(k + 1).fill(0)); const mod: number = 1e9 + 7; f[0][0] = g[0][0] = 1; for (let i = 1; i <= n; ++i) { if (i >= minLength && !prime(s[i - 1]) && (i === n || prime(s[i]))) { for (let j = 1; j <= k; ++j) { f[i][j] = g[i - minLength][j - 1]; } } for (let j = 0; j <= k; ++j) { g[i][j] = (g[i - 1][j] + f[i][j]) % mod; } } return f[n][k]; }