Welcome to Subscribe On Youtube
2200. Find All K-Distant Indices in an Array
Description
You are given a 0-indexed integer array nums
and two integers key
and k
. A k-distant index is an index i
of nums
for which there exists at least one index j
such that |i - j| <= k
and nums[j] == key
.
Return a list of all k-distant indices sorted in increasing order.
Example 1:
Input: nums = [3,4,9,1,3,9,5], key = 9, k = 1 Output: [1,2,3,4,5,6] Explanation: Here,nums[2] == key
andnums[5] == key. - For index 0, |0 - 2| > k and |0 - 5| > k, so there is no j
where|0 - j| <= k
andnums[j] == key. Thus, 0 is not a k-distant index. - For index 1, |1 - 2| <= k and nums[2] == key, so 1 is a k-distant index. - For index 2, |2 - 2| <= k and nums[2] == key, so 2 is a k-distant index. - For index 3, |3 - 2| <= k and nums[2] == key, so 3 is a k-distant index. - For index 4, |4 - 5| <= k and nums[5] == key, so 4 is a k-distant index. - For index 5, |5 - 5| <= k and nums[5] == key, so 5 is a k-distant index. - For index 6, |6 - 5| <= k and nums[5] == key, so 6 is a k-distant index.
Thus, we return [1,2,3,4,5,6] which is sorted in increasing order.
Example 2:
Input: nums = [2,2,2,2,2], key = 2, k = 2 Output: [0,1,2,3,4] Explanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index. Hence, we return [0,1,2,3,4].
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
key
is an integer from the arraynums
.1 <= k <= nums.length
Solutions
Solution 1: Enumeration
We enumerate the index $i$ in the range $[0, n)$, and for each index $i$, we enumerate the index $j$ in the range $[0, n)$. If $ | i - j | \leq k$ and $nums[j] = key$, then $i$ is a K-nearest neighbor index. We add $i$ to the answer array, then break the inner loop and enumerate the next index $i$. |
The time complexity is $O(n^2)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
Solution 2: Preprocessing + Binary Search
We can preprocess to get the indices of all elements equal to $key$, recorded in the array $idx$. All index elements in the array $idx$ are sorted in ascending order.
Next, we enumerate the index $i$. For each index $i$, we can use binary search to find elements in the range $[i - k, i + k]$ in the array $idx$. If there are elements, then $i$ is a K-nearest neighbor index. We add $i$ to the answer array.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
Solution 3: Two Pointers
We enumerate the index $i$, and use a pointer $j$ to point to the smallest index that satisfies $j \geq i - k$ and $nums[j] = key$. If $j$ exists and $j \leq i + k$, then $i$ is a K-nearest neighbor index. We add $i$ to the answer array.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
-
class Solution { public List<Integer> findKDistantIndices(int[] nums, int key, int k) { int n = nums.length; List<Integer> ans = new ArrayList<>(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (Math.abs(i - j) <= k && nums[j] == key) { ans.add(i); break; } } } return ans; } }
-
class Solution { public: vector<int> findKDistantIndices(vector<int>& nums, int key, int k) { int n = nums.size(); vector<int> ans; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (abs(i - j) <= k && nums[j] == key) { ans.push_back(i); break; } } } return ans; } };
-
class Solution: def findKDistantIndices(self, nums: List[int], key: int, k: int) -> List[int]: ans = [] n = len(nums) for i in range(n): if any(abs(i - j) <= k and nums[j] == key for j in range(n)): ans.append(i) return ans
-
func findKDistantIndices(nums []int, key int, k int) (ans []int) { for i := range nums { for j, x := range nums { if abs(i-j) <= k && x == key { ans = append(ans, i) break } } } return ans } func abs(x int) int { if x < 0 { return -x } return x }
-
function findKDistantIndices(nums: number[], key: number, k: number): number[] { const n = nums.length; const ans: number[] = []; for (let i = 0; i < n; ++i) { for (let j = 0; j < n; ++j) { if (Math.abs(i - j) <= k && nums[j] === key) { ans.push(i); break; } } } return ans; }