Welcome to Subscribe On Youtube

2056. Number of Valid Move Combinations On Chessboard

Description

There is an 8 x 8 chessboard containing n pieces (rooks, queens, or bishops). You are given a string array pieces of length n, where pieces[i] describes the type (rook, queen, or bishop) of the ith piece. In addition, you are given a 2D integer array positions also of length n, where positions[i] = [ri, ci] indicates that the ith piece is currently at the 1-based coordinate (ri, ci) on the chessboard.

When making a move for a piece, you choose a destination square that the piece will travel toward and stop on.

  • A rook can only travel horizontally or vertically from (r, c) to the direction of (r+1, c), (r-1, c), (r, c+1), or (r, c-1).
  • A queen can only travel horizontally, vertically, or diagonally from (r, c) to the direction of (r+1, c), (r-1, c), (r, c+1), (r, c-1), (r+1, c+1), (r+1, c-1), (r-1, c+1), (r-1, c-1).
  • A bishop can only travel diagonally from (r, c) to the direction of (r+1, c+1), (r+1, c-1), (r-1, c+1), (r-1, c-1).

You must make a move for every piece on the board simultaneously. A move combination consists of all the moves performed on all the given pieces. Every second, each piece will instantaneously travel one square towards their destination if they are not already at it. All pieces start traveling at the 0th second. A move combination is invalid if, at a given time, two or more pieces occupy the same square.

Return the number of valid move combinations​​​​​.

Notes:

  • No two pieces will start in the same square.
  • You may choose the square a piece is already on as its destination.
  • If two pieces are directly adjacent to each other, it is valid for them to move past each other and swap positions in one second.

 

Example 1:

Input: pieces = ["rook"], positions = [[1,1]]
Output: 15
Explanation: The image above shows the possible squares the piece can move to.

Example 2:

Input: pieces = ["queen"], positions = [[1,1]]
Output: 22
Explanation: The image above shows the possible squares the piece can move to.

Example 3:

Input: pieces = ["bishop"], positions = [[4,3]]
Output: 12
Explanation: The image above shows the possible squares the piece can move to.

 

Constraints:

  • n == pieces.length
  • n == positions.length
  • 1 <= n <= 4
  • pieces only contains the strings "rook", "queen", and "bishop".
  • There will be at most one queen on the chessboard.
  • 1 <= xi, yi <= 8
  • Each positions[i] is distinct.

Solutions

  • class Solution {
        int n, m = 9, ans;
        int[][][] dist;
        int[][] end;
        String[] pieces;
        int[][] positions;
        int[][] rookDirs = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} };
        int[][] bishopDirs = { {1, 1}, {1, -1}, {-1, 1}, {-1, -1} };
        int[][] queenDirs = { {1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1} };
    
        public int countCombinations(String[] pieces, int[][] positions) {
            n = pieces.length;
            dist = new int[n][m][m];
            end = new int[n][3];
            ans = 0;
            this.pieces = pieces;
            this.positions = positions;
    
            dfs(0);
            return ans;
        }
    
        private void dfs(int i) {
            if (i >= n) {
                ans++;
                return;
            }
    
            int x = positions[i][0], y = positions[i][1];
            resetDist(i);
            dist[i][x][y] = 0;
            end[i] = new int[] {x, y, 0};
    
            if (checkStop(i, x, y, 0)) {
                dfs(i + 1);
            }
    
            int[][] dirs = getDirs(pieces[i]);
            for (int[] dir : dirs) {
                resetDist(i);
                dist[i][x][y] = 0;
                int nx = x + dir[0], ny = y + dir[1], nt = 1;
    
                while (isValid(nx, ny) && checkPass(i, nx, ny, nt)) {
                    dist[i][nx][ny] = nt;
                    end[i] = new int[] {nx, ny, nt};
                    if (checkStop(i, nx, ny, nt)) {
                        dfs(i + 1);
                    }
                    nx += dir[0];
                    ny += dir[1];
                    nt++;
                }
            }
        }
    
        private void resetDist(int i) {
            for (int j = 0; j < m; j++) {
                for (int k = 0; k < m; k++) {
                    dist[i][j][k] = -1;
                }
            }
        }
    
        private boolean checkStop(int i, int x, int y, int t) {
            for (int j = 0; j < i; j++) {
                if (dist[j][x][y] >= t) {
                    return false;
                }
            }
            return true;
        }
    
        private boolean checkPass(int i, int x, int y, int t) {
            for (int j = 0; j < i; j++) {
                if (dist[j][x][y] == t) {
                    return false;
                }
                if (end[j][0] == x && end[j][1] == y && end[j][2] <= t) {
                    return false;
                }
            }
            return true;
        }
    
        private boolean isValid(int x, int y) {
            return x >= 1 && x < m && y >= 1 && y < m;
        }
    
        private int[][] getDirs(String piece) {
            char c = piece.charAt(0);
            return switch (c) {
                case 'r' -> rookDirs;
                case 'b' -> bishopDirs;
                default -> queenDirs;
            };
        }
    }
    
    
  • class Solution {
    public:
        int countCombinations(vector<string>& pieces, vector<vector<int>>& positions) {
            int n = pieces.size();
            const int m = 9;
            int ans = 0;
    
            vector<vector<vector<int>>> dist(n, vector<vector<int>>(m, vector<int>(m, -1)));
            vector<vector<int>> end(n, vector<int>(3));
    
            const int rookDirs[4][2] = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} };
            const int bishopDirs[4][2] = { {1, 1}, {1, -1}, {-1, 1}, {-1, -1} };
            const int queenDirs[8][2] = { {1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1} };
    
            auto resetDist = [&](int i) {
                for (int j = 0; j < m; j++) {
                    for (int k = 0; k < m; k++) {
                        dist[i][j][k] = -1;
                    }
                }
            };
    
            auto checkStop = [&](int i, int x, int y, int t) -> bool {
                for (int j = 0; j < i; j++) {
                    if (dist[j][x][y] >= t) {
                        return false;
                    }
                }
                return true;
            };
    
            auto checkPass = [&](int i, int x, int y, int t) -> bool {
                for (int j = 0; j < i; j++) {
                    if (dist[j][x][y] == t) {
                        return false;
                    }
                    if (end[j][0] == x && end[j][1] == y && end[j][2] <= t) {
                        return false;
                    }
                }
                return true;
            };
    
            auto isValid = [&](int x, int y) -> bool {
                return x >= 1 && x < m && y >= 1 && y < m;
            };
    
            auto getDirs = [&](const string& piece) -> const int(*)[2] {
                char c = piece[0];
                if (c == 'r') {
                    return rookDirs;
                }
                if (c == 'b') {
                    return bishopDirs;
                }
                return queenDirs;
            };
    
            auto dfs = [&](auto&& dfs, int i) -> void {
                if (i >= n) {
                    ans++;
                    return;
                }
    
                int x = positions[i][0], y = positions[i][1];
                resetDist(i);
                dist[i][x][y] = 0;
                end[i] = {x, y, 0};
    
                if (checkStop(i, x, y, 0)) {
                    dfs(dfs, i + 1);
                }
    
                const int(*dirs)[2] = getDirs(pieces[i]);
                int dirsSize = (pieces[i][0] == 'q') ? 8 : 4;
    
                for (int d = 0; d < dirsSize; d++) {
                    resetDist(i);
                    dist[i][x][y] = 0;
                    int nx = x + dirs[d][0], ny = y + dirs[d][1], nt = 1;
    
                    while (isValid(nx, ny) && checkPass(i, nx, ny, nt)) {
                        dist[i][nx][ny] = nt;
                        end[i] = {nx, ny, nt};
                        if (checkStop(i, nx, ny, nt)) {
                            dfs(dfs, i + 1);
                        }
                        nx += dirs[d][0];
                        ny += dirs[d][1];
                        nt++;
                    }
                }
            };
    
            dfs(dfs, 0);
            return ans;
        }
    };
    
    
  • rook_dirs = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    bishop_dirs = [(1, 1), (1, -1), (-1, 1), (-1, -1)]
    queue_dirs = rook_dirs + bishop_dirs
    
    
    def get_dirs(piece: str) -> List[Tuple[int, int]]:
        match piece[0]:
            case "r":
                return rook_dirs
            case "b":
                return bishop_dirs
            case _:
                return queue_dirs
    
    
    class Solution:
        def countCombinations(self, pieces: List[str], positions: List[List[int]]) -> int:
            def check_stop(i: int, x: int, y: int, t: int) -> bool:
                return all(dist[j][x][y] < t for j in range(i))
    
            def check_pass(i: int, x: int, y: int, t: int) -> bool:
                for j in range(i):
                    if dist[j][x][y] == t:
                        return False
                    if end[j][0] == x and end[j][1] == y and end[j][2] <= t:
                        return False
                return True
    
            def dfs(i: int) -> None:
                if i >= n:
                    nonlocal ans
                    ans += 1
                    return
                x, y = positions[i]
                dist[i][:] = [[-1] * m for _ in range(m)]
                dist[i][x][y] = 0
                end[i] = (x, y, 0)
                if check_stop(i, x, y, 0):
                    dfs(i + 1)
                dirs = get_dirs(pieces[i])
                for dx, dy in dirs:
                    dist[i][:] = [[-1] * m for _ in range(m)]
                    dist[i][x][y] = 0
                    nx, ny, nt = x + dx, y + dy, 1
                    while 1 <= nx < m and 1 <= ny < m and check_pass(i, nx, ny, nt):
                        dist[i][nx][ny] = nt
                        end[i] = (nx, ny, nt)
                        if check_stop(i, nx, ny, nt):
                            dfs(i + 1)
                        nx += dx
                        ny += dy
                        nt += 1
    
            n = len(pieces)
            m = 9
            dist = [[[-1] * m for _ in range(m)] for _ in range(n)]
            end = [(0, 0, 0) for _ in range(n)]
            ans = 0
            dfs(0)
            return ans
    
    
  • func countCombinations(pieces []string, positions [][]int) (ans int) {
    	n := len(pieces)
    	m := 9
    	dist := make([][][]int, n)
    	for i := range dist {
    		dist[i] = make([][]int, m)
    		for j := range dist[i] {
    			dist[i][j] = make([]int, m)
    		}
    	}
    
    	end := make([][3]int, n)
    
    	rookDirs := [][2]int{ {1, 0}, {-1, 0}, {0, 1}, {0, -1} }
    	bishopDirs := [][2]int{ {1, 1}, {1, -1}, {-1, 1}, {-1, -1} }
    	queenDirs := [][2]int{ {1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1} }
    
    	resetDist := func(i int) {
    		for j := 0; j < m; j++ {
    			for k := 0; k < m; k++ {
    				dist[i][j][k] = -1
    			}
    		}
    	}
    
    	checkStop := func(i, x, y, t int) bool {
    		for j := 0; j < i; j++ {
    			if dist[j][x][y] >= t {
    				return false
    			}
    		}
    		return true
    	}
    
    	checkPass := func(i, x, y, t int) bool {
    		for j := 0; j < i; j++ {
    			if dist[j][x][y] == t {
    				return false
    			}
    			if end[j][0] == x && end[j][1] == y && end[j][2] <= t {
    				return false
    			}
    		}
    		return true
    	}
    
    	isValid := func(x, y int) bool {
    		return x >= 1 && x < m && y >= 1 && y < m
    	}
    
    	getDirs := func(piece string) [][2]int {
    		switch piece[0] {
    		case 'r':
    			return rookDirs
    		case 'b':
    			return bishopDirs
    		default:
    			return queenDirs
    		}
    	}
    
    	var dfs func(i int)
    	dfs = func(i int) {
    		if i >= n {
    			ans++
    			return
    		}
    
    		x, y := positions[i][0], positions[i][1]
    		resetDist(i)
    		dist[i][x][y] = 0
    		end[i] = [3]int{x, y, 0}
    
    		if checkStop(i, x, y, 0) {
    			dfs(i + 1)
    		}
    
    		dirs := getDirs(pieces[i])
    		for _, dir := range dirs {
    			resetDist(i)
    			dist[i][x][y] = 0
    			nx, ny, nt := x+dir[0], y+dir[1], 1
    
    			for isValid(nx, ny) && checkPass(i, nx, ny, nt) {
    				dist[i][nx][ny] = nt
    				end[i] = [3]int{nx, ny, nt}
    				if checkStop(i, nx, ny, nt) {
    					dfs(i + 1)
    				}
    				nx += dir[0]
    				ny += dir[1]
    				nt++
    			}
    		}
    	}
    
    	dfs(0)
    	return
    }
    
    
  • const rookDirs: [number, number][] = [
        [1, 0],
        [-1, 0],
        [0, 1],
        [0, -1],
    ];
    const bishopDirs: [number, number][] = [
        [1, 1],
        [1, -1],
        [-1, 1],
        [-1, -1],
    ];
    const queenDirs = [...rookDirs, ...bishopDirs];
    
    function countCombinations(pieces: string[], positions: number[][]): number {
        const n = pieces.length;
        const m = 9;
        let ans = 0;
    
        const dist = Array.from({ length: n }, () =>
            Array.from({ length: m }, () => Array(m).fill(-1)),
        );
    
        const end: [number, number, number][] = Array(n).fill([0, 0, 0]);
    
        const resetDist = (i: number) => {
            for (let j = 0; j < m; j++) {
                for (let k = 0; k < m; k++) {
                    dist[i][j][k] = -1;
                }
            }
        };
    
        const checkStop = (i: number, x: number, y: number, t: number): boolean => {
            for (let j = 0; j < i; j++) {
                if (dist[j][x][y] >= t) {
                    return false;
                }
            }
            return true;
        };
    
        const checkPass = (i: number, x: number, y: number, t: number): boolean => {
            for (let j = 0; j < i; j++) {
                if (dist[j][x][y] === t) {
                    return false;
                }
                if (end[j][0] === x && end[j][1] === y && end[j][2] <= t) {
                    return false;
                }
            }
            return true;
        };
    
        const isValid = (x: number, y: number): boolean => {
            return x >= 1 && x < m && y >= 1 && y < m;
        };
    
        const getDirs = (piece: string): [number, number][] => {
            switch (piece[0]) {
                case 'r':
                    return rookDirs;
                case 'b':
                    return bishopDirs;
                default:
                    return queenDirs;
            }
        };
    
        const dfs = (i: number) => {
            if (i >= n) {
                ans++;
                return;
            }
    
            const [x, y] = positions[i];
            resetDist(i);
            dist[i][x][y] = 0;
            end[i] = [x, y, 0];
    
            if (checkStop(i, x, y, 0)) {
                dfs(i + 1);
            }
    
            const dirs = getDirs(pieces[i]);
            for (const [dx, dy] of dirs) {
                resetDist(i);
                dist[i][x][y] = 0;
                let nx = x + dx,
                    ny = y + dy,
                    nt = 1;
    
                while (isValid(nx, ny) && checkPass(i, nx, ny, nt)) {
                    dist[i][nx][ny] = nt;
                    end[i] = [nx, ny, nt];
                    if (checkStop(i, nx, ny, nt)) {
                        dfs(i + 1);
                    }
                    nx += dx;
                    ny += dy;
                    nt++;
                }
            }
        };
    
        dfs(0);
        return ans;
    }
    
    

All Problems

All Solutions