Welcome to Subscribe On Youtube

1785. Minimum Elements to Add to Form a Given Sum

Description

You are given an integer array nums and two integers limit and goal. The array nums has an interesting property that abs(nums[i]) <= limit.

Return the minimum number of elements you need to add to make the sum of the array equal to goal. The array must maintain its property that abs(nums[i]) <= limit.

Note that abs(x) equals x if x >= 0, and -x otherwise.

 

Example 1:

Input: nums = [1,-1,1], limit = 3, goal = -4
Output: 2
Explanation: You can add -2 and -3, then the sum of the array will be 1 - 1 + 1 - 2 - 3 = -4.

Example 2:

Input: nums = [1,-10,9,1], limit = 100, goal = 0
Output: 1

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= limit <= 106
  • -limit <= nums[i] <= limit
  • -109 <= goal <= 109

Solutions

Solution 1: Greedy

First, we calculate the sum of the array elements $s$, and then calculate the difference $d$ between $s$ and $goal$.

The number of elements to be added is the absolute value of $d$ divided by $limit$ and rounded up, that is, $\lceil \frac{ d }{limit} \rceil$.

Note that in this problem, the data range of array elements is $[-10^6, 10^6]$, the maximum number of elements is $10^5$, the total sum $s$ and the difference $d$ may exceed the range of 32-bit integers, so we need to use 64-bit integers.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.

  • class Solution {
        public int minElements(int[] nums, int limit, int goal) {
            // long s = Arrays.stream(nums).asLongStream().sum();
            long s = 0;
            for (int v : nums) {
                s += v;
            }
            long d = Math.abs(s - goal);
            return (int) ((d + limit - 1) / limit);
        }
    }
    
  • class Solution {
    public:
        int minElements(vector<int>& nums, int limit, int goal) {
            long long s = accumulate(nums.begin(), nums.end(), 0ll);
            long long d = abs(s - goal);
            return (d + limit - 1) / limit;
        }
    };
    
  • class Solution:
        def minElements(self, nums: List[int], limit: int, goal: int) -> int:
            d = abs(sum(nums) - goal)
            return (d + limit - 1) // limit
    
    
  • func minElements(nums []int, limit int, goal int) int {
    	s := 0
    	for _, v := range nums {
    		s += v
    	}
    	d := abs(s - goal)
    	return (d + limit - 1) / limit
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    
  • function minElements(nums: number[], limit: number, goal: number): number {
        const sum = nums.reduce((r, v) => r + v, 0);
        const diff = Math.abs(goal - sum);
        return Math.floor((diff + limit - 1) / limit);
    }
    
    
  • impl Solution {
        pub fn min_elements(nums: Vec<i32>, limit: i32, goal: i32) -> i32 {
            let limit = limit as i64;
            let goal = goal as i64;
            let mut sum = 0;
            for &num in nums.iter() {
                sum += num as i64;
            }
            let diff = (goal - sum).abs();
            ((diff + limit - 1) / limit) as i32
        }
    }
    
    

All Problems

All Solutions