Welcome to Subscribe On Youtube
1750. Minimum Length of String After Deleting Similar Ends
Description
Given a string s
consisting only of characters 'a'
, 'b'
, and 'c'
. You are asked to apply the following algorithm on the string any number of times:
- Pick a non-empty prefix from the string
s
where all the characters in the prefix are equal. - Pick a non-empty suffix from the string
s
where all the characters in this suffix are equal. - The prefix and the suffix should not intersect at any index.
- The characters from the prefix and suffix must be the same.
- Delete both the prefix and the suffix.
Return the minimum length of s
after performing the above operation any number of times (possibly zero times).
Example 1:
Input: s = "ca" Output: 2 Explanation: You can't remove any characters, so the string stays as is.
Example 2:
Input: s = "cabaabac" Output: 0 Explanation: An optimal sequence of operations is: - Take prefix = "c" and suffix = "c" and remove them, s = "abaaba". - Take prefix = "a" and suffix = "a" and remove them, s = "baab". - Take prefix = "b" and suffix = "b" and remove them, s = "aa". - Take prefix = "a" and suffix = "a" and remove them, s = "".
Example 3:
Input: s = "aabccabba" Output: 3 Explanation: An optimal sequence of operations is: - Take prefix = "aa" and suffix = "a" and remove them, s = "bccabb". - Take prefix = "b" and suffix = "bb" and remove them, s = "cca".
Constraints:
1 <= s.length <= 105
s
only consists of characters'a'
,'b'
, and'c'
.
Solutions
Solution 1: Two pointers
We define two pointers $i$ and $j$ to point to the head and tail of the string $s$ respectively, then move them to the middle until the characters pointed to by $i$ and $j$ are not equal, then $\max(0, j - i + 1)$ is the answer.
The time complexity is $O(n)$ and the space complexity is $O(1)$. Where $n$ is the length of the string $s$.
-
class Solution { public int minimumLength(String s) { int i = 0, j = s.length() - 1; while (i < j && s.charAt(i) == s.charAt(j)) { while (i + 1 < j && s.charAt(i) == s.charAt(i + 1)) { ++i; } while (i < j - 1 && s.charAt(j) == s.charAt(j - 1)) { --j; } ++i; --j; } return Math.max(0, j - i + 1); } }
-
class Solution { public: int minimumLength(string s) { int i = 0, j = s.size() - 1; while (i < j && s[i] == s[j]) { while (i + 1 < j && s[i] == s[i + 1]) { ++i; } while (i < j - 1 && s[j] == s[j - 1]) { --j; } ++i; --j; } return max(0, j - i + 1); } };
-
class Solution: def minimumLength(self, s: str) -> int: i, j = 0, len(s) - 1 while i < j and s[i] == s[j]: while i + 1 < j and s[i] == s[i + 1]: i += 1 while i < j - 1 and s[j - 1] == s[j]: j -= 1 i, j = i + 1, j - 1 return max(0, j - i + 1)
-
func minimumLength(s string) int { i, j := 0, len(s)-1 for i < j && s[i] == s[j] { for i+1 < j && s[i] == s[i+1] { i++ } for i < j-1 && s[j] == s[j-1] { j-- } i, j = i+1, j-1 } return max(0, j-i+1) }
-
function minimumLength(s: string): number { let i = 0; let j = s.length - 1; while (i < j && s[i] === s[j]) { while (i + 1 < j && s[i + 1] === s[i]) { ++i; } while (i < j - 1 && s[j - 1] === s[j]) { --j; } ++i; --j; } return Math.max(0, j - i + 1); }
-
impl Solution { pub fn minimum_length(s: String) -> i32 { let s = s.as_bytes(); let n = s.len(); let mut start = 0; let mut end = n - 1; while start < end && s[start] == s[end] { while start + 1 < end && s[start] == s[start + 1] { start += 1; } while start < end - 1 && s[end] == s[end - 1] { end -= 1; } start += 1; end -= 1; } (0).max(end - start + 1) as i32 } }