Welcome to Subscribe On Youtube
1695. Maximum Erasure Value
Description
You are given an array of positive integers nums
and want to erase a subarray containing unique elements. The score you get by erasing the subarray is equal to the sum of its elements.
Return the maximum score you can get by erasing exactly one subarray.
An array b
is called to be a subarray of a
if it forms a contiguous subsequence of a
, that is, if it is equal to a[l],a[l+1],...,a[r]
for some (l,r)
.
Example 1:
Input: nums = [4,2,4,5,6] Output: 17 Explanation: The optimal subarray here is [2,4,5,6].
Example 2:
Input: nums = [5,2,1,2,5,2,1,2,5] Output: 8 Explanation: The optimal subarray here is [5,2,1] or [1,2,5].
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
Solutions
Solution 1: Array or Hash Table + Prefix Sum
We use an array or hash table
We traverse the array, for each number
The time complexity is
-
class Solution { public int maximumUniqueSubarray(int[] nums) { int[] d = new int[10001]; int n = nums.length; int[] s = new int[n + 1]; for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } int ans = 0, j = 0; for (int i = 1; i <= n; ++i) { int v = nums[i - 1]; j = Math.max(j, d[v]); ans = Math.max(ans, s[i] - s[j]); d[v] = i; } return ans; } }
-
class Solution { public: int maximumUniqueSubarray(vector<int>& nums) { int d[10001]{}; int n = nums.size(); int s[n + 1]; s[0] = 0; for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } int ans = 0, j = 0; for (int i = 1; i <= n; ++i) { int v = nums[i - 1]; j = max(j, d[v]); ans = max(ans, s[i] - s[j]); d[v] = i; } return ans; } };
-
class Solution: def maximumUniqueSubarray(self, nums: List[int]) -> int: d = defaultdict(int) s = list(accumulate(nums, initial=0)) ans = j = 0 for i, v in enumerate(nums, 1): j = max(j, d[v]) ans = max(ans, s[i] - s[j]) d[v] = i return ans
-
func maximumUniqueSubarray(nums []int) (ans int) { d := [10001]int{} n := len(nums) s := make([]int, n+1) for i, v := range nums { s[i+1] = s[i] + v } for i, j := 1, 0; i <= n; i++ { v := nums[i-1] j = max(j, d[v]) ans = max(ans, s[i]-s[j]) d[v] = i } return }
-
function maximumUniqueSubarray(nums: number[]): number { const m = Math.max(...nums); const n = nums.length; const s: number[] = Array.from({ length: n + 1 }, () => 0); for (let i = 1; i <= n; ++i) { s[i] = s[i - 1] + nums[i - 1]; } const d = Array.from({ length: m + 1 }, () => 0); let [ans, j] = [0, 0]; for (let i = 1; i <= n; ++i) { j = Math.max(j, d[nums[i - 1]]); ans = Math.max(ans, s[i] - s[j]); d[nums[i - 1]] = i; } return ans; }