Welcome to Subscribe On Youtube

1632. Rank Transform of a Matrix

Description

Given an m x n matrix, return a new matrix answer where answer[row][col] is the rank of matrix[row][col].

The rank is an integer that represents how large an element is compared to other elements. It is calculated using the following rules:

  • The rank is an integer starting from 1.
  • If two elements p and q are in the same row or column, then:
    • If p < q then rank(p) < rank(q)
    • If p == q then rank(p) == rank(q)
    • If p > q then rank(p) > rank(q)
  • The rank should be as small as possible.

The test cases are generated so that answer is unique under the given rules.

 

Example 1:

Input: matrix = [[1,2],[3,4]]
Output: [[1,2],[2,3]]
Explanation:
The rank of matrix[0][0] is 1 because it is the smallest integer in its row and column.
The rank of matrix[0][1] is 2 because matrix[0][1] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][0] is 2 because matrix[1][0] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][1] is 3 because matrix[1][1] > matrix[0][1], matrix[1][1] > matrix[1][0], and both matrix[0][1] and matrix[1][0] are rank 2.

Example 2:

Input: matrix = [[7,7],[7,7]]
Output: [[1,1],[1,1]]

Example 3:

Input: matrix = [[20,-21,14],[-19,4,19],[22,-47,24],[-19,4,19]]
Output: [[4,2,3],[1,3,4],[5,1,6],[1,3,4]]

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 500
  • -109 <= matrix[row][col] <= 109

Solutions

  • class UnionFind {
        private int[] p;
        private int[] size;
    
        public UnionFind(int n) {
            p = new int[n];
            size = new int[n];
            for (int i = 0; i < n; ++i) {
                p[i] = i;
                size[i] = 1;
            }
        }
    
        public int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    
        public void union(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa != pb) {
                if (size[pa] > size[pb]) {
                    p[pb] = pa;
                    size[pa] += size[pb];
                } else {
                    p[pa] = pb;
                    size[pb] += size[pa];
                }
            }
        }
    
        public void reset(int x) {
            p[x] = x;
            size[x] = 1;
        }
    }
    
    class Solution {
        public int[][] matrixRankTransform(int[][] matrix) {
            int m = matrix.length, n = matrix[0].length;
            TreeMap<Integer, List<int[]>> d = new TreeMap<>();
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    d.computeIfAbsent(matrix[i][j], k -> new ArrayList<>()).add(new int[] {i, j});
                }
            }
            int[] rowMax = new int[m];
            int[] colMax = new int[n];
            int[][] ans = new int[m][n];
            UnionFind uf = new UnionFind(m + n);
            int[] rank = new int[m + n];
            for (var ps : d.values()) {
                for (var p : ps) {
                    uf.union(p[0], p[1] + m);
                }
                for (var p : ps) {
                    int i = p[0], j = p[1];
                    rank[uf.find(i)] = Math.max(rank[uf.find(i)], Math.max(rowMax[i], colMax[j]));
                }
                for (var p : ps) {
                    int i = p[0], j = p[1];
                    ans[i][j] = 1 + rank[uf.find(i)];
                    rowMax[i] = ans[i][j];
                    colMax[j] = ans[i][j];
                }
                for (var p : ps) {
                    uf.reset(p[0]);
                    uf.reset(p[1] + m);
                }
            }
            return ans;
        }
    }
    
  • class UnionFind {
    public:
        UnionFind(int n) {
            p = vector<int>(n);
            size = vector<int>(n, 1);
            iota(p.begin(), p.end(), 0);
        }
    
        void unite(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa != pb) {
                if (size[pa] > size[pb]) {
                    p[pb] = pa;
                    size[pa] += size[pb];
                } else {
                    p[pa] = pb;
                    size[pb] += size[pa];
                }
            }
        }
    
        int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    
        void reset(int x) {
            p[x] = x;
            size[x] = 1;
        }
    
    private:
        vector<int> p, size;
    };
    
    class Solution {
    public:
        vector<vector<int>> matrixRankTransform(vector<vector<int>>& matrix) {
            int m = matrix.size(), n = matrix[0].size();
            map<int, vector<pair<int, int>>> d;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    d[matrix[i][j]].push_back({i, j});
                }
            }
            vector<int> rowMax(m);
            vector<int> colMax(n);
            vector<vector<int>> ans(m, vector<int>(n));
            UnionFind uf(m + n);
            vector<int> rank(m + n);
            for (auto& [_, ps] : d) {
                for (auto& [i, j] : ps) {
                    uf.unite(i, j + m);
                }
                for (auto& [i, j] : ps) {
                    rank[uf.find(i)] = max({rank[uf.find(i)], rowMax[i], colMax[j]});
                }
                for (auto& [i, j] : ps) {
                    ans[i][j] = rowMax[i] = colMax[j] = 1 + rank[uf.find(i)];
                }
                for (auto& [i, j] : ps) {
                    uf.reset(i);
                    uf.reset(j + m);
                }
            }
            return ans;
        }
    };
    
  • class UnionFind:
        def __init__(self, n):
            self.p = list(range(n))
            self.size = [1] * n
    
        def find(self, x):
            if self.p[x] != x:
                self.p[x] = self.find(self.p[x])
            return self.p[x]
    
        def union(self, a, b):
            pa, pb = self.find(a), self.find(b)
            if pa != pb:
                if self.size[pa] > self.size[pb]:
                    self.p[pb] = pa
                    self.size[pa] += self.size[pb]
                else:
                    self.p[pa] = pb
                    self.size[pb] += self.size[pa]
    
        def reset(self, x):
            self.p[x] = x
            self.size[x] = 1
    
    
    class Solution:
        def matrixRankTransform(self, matrix: List[List[int]]) -> List[List[int]]:
            m, n = len(matrix), len(matrix[0])
            d = defaultdict(list)
            for i, row in enumerate(matrix):
                for j, v in enumerate(row):
                    d[v].append((i, j))
            row_max = [0] * m
            col_max = [0] * n
            ans = [[0] * n for _ in range(m)]
            uf = UnionFind(m + n)
            for v in sorted(d):
                rank = defaultdict(int)
                for i, j in d[v]:
                    uf.union(i, j + m)
                for i, j in d[v]:
                    rank[uf.find(i)] = max(rank[uf.find(i)], row_max[i], col_max[j])
                for i, j in d[v]:
                    ans[i][j] = row_max[i] = col_max[j] = 1 + rank[uf.find(i)]
                for i, j in d[v]:
                    uf.reset(i)
                    uf.reset(j + m)
            return ans
    
    
  • type unionFind struct {
    	p, size []int
    }
    
    func newUnionFind(n int) *unionFind {
    	p := make([]int, n)
    	size := make([]int, n)
    	for i := range p {
    		p[i] = i
    		size[i] = 1
    	}
    	return &unionFind{p, size}
    }
    
    func (uf *unionFind) find(x int) int {
    	if uf.p[x] != x {
    		uf.p[x] = uf.find(uf.p[x])
    	}
    	return uf.p[x]
    }
    
    func (uf *unionFind) union(a, b int) {
    	pa, pb := uf.find(a), uf.find(b)
    	if pa != pb {
    		if uf.size[pa] > uf.size[pb] {
    			uf.p[pb] = pa
    			uf.size[pa] += uf.size[pb]
    		} else {
    			uf.p[pa] = pb
    			uf.size[pb] += uf.size[pa]
    		}
    	}
    }
    
    func (uf *unionFind) reset(x int) {
    	uf.p[x] = x
    	uf.size[x] = 1
    }
    
    func matrixRankTransform(matrix [][]int) [][]int {
    	m, n := len(matrix), len(matrix[0])
    	type pair struct{ i, j int }
    	d := map[int][]pair{}
    	for i, row := range matrix {
    		for j, v := range row {
    			d[v] = append(d[v], pair{i, j})
    		}
    	}
    	rowMax := make([]int, m)
    	colMax := make([]int, n)
    	ans := make([][]int, m)
    	for i := range ans {
    		ans[i] = make([]int, n)
    	}
    	vs := []int{}
    	for v := range d {
    		vs = append(vs, v)
    	}
    	sort.Ints(vs)
    	uf := newUnionFind(m + n)
    	rank := make([]int, m+n)
    	for _, v := range vs {
    		ps := d[v]
    		for _, p := range ps {
    			uf.union(p.i, p.j+m)
    		}
    		for _, p := range ps {
    			i, j := p.i, p.j
    			rank[uf.find(i)] = max(rank[uf.find(i)], max(rowMax[i], colMax[j]))
    		}
    		for _, p := range ps {
    			i, j := p.i, p.j
    			ans[i][j] = 1 + rank[uf.find(i)]
    			rowMax[i], colMax[j] = ans[i][j], ans[i][j]
    		}
    		for _, p := range ps {
    			uf.reset(p.i)
    			uf.reset(p.j + m)
    		}
    	}
    	return ans
    }
    

All Problems

All Solutions