Welcome to Subscribe On Youtube
1630. Arithmetic Subarrays
Description
A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s
is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0]
for all valid i
.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
The following sequence is not arithmetic:
1, 1, 2, 5, 7
You are given an array of n
integers, nums
, and two arrays of m
integers each, l
and r
, representing the m
range queries, where the ith
query is the range [l[i], r[i]]
. All the arrays are 0-indexed.
Return a list of boolean
elements answer
, where answer[i]
is true
if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]]
can be rearranged to form an arithmetic sequence, and false
otherwise.
Example 1:
Input: nums =[4,6,5,9,3,7]
, l =[0,0,2]
, r =[2,3,5]
Output:[true,false,true]
Explanation: In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence. In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence. In the 2nd query, the subarray is[5,9,3,7]. This
can be rearranged as[3,5,7,9]
, which is an arithmetic sequence.
Example 2:
Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10] Output: [false,true,false,false,true,true]
Constraints:
n == nums.length
m == l.length
m == r.length
2 <= n <= 500
1 <= m <= 500
0 <= l[i] < r[i] < n
-105 <= nums[i] <= 105
Solutions
-
class Solution { public List<Boolean> checkArithmeticSubarrays(int[] nums, int[] l, int[] r) { List<Boolean> ans = new ArrayList<>(); for (int i = 0; i < l.length; ++i) { ans.add(check(nums, l[i], r[i])); } return ans; } private boolean check(int[] nums, int l, int r) { Set<Integer> s = new HashSet<>(); int n = r - l + 1; int a1 = 1 << 30, an = -a1; for (int i = l; i <= r; ++i) { s.add(nums[i]); a1 = Math.min(a1, nums[i]); an = Math.max(an, nums[i]); } if ((an - a1) % (n - 1) != 0) { return false; } int d = (an - a1) / (n - 1); for (int i = 1; i < n; ++i) { if (!s.contains(a1 + (i - 1) * d)) { return false; } } return true; } }
-
class Solution { public: vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) { vector<bool> ans; auto check = [](vector<int>& nums, int l, int r) { unordered_set<int> s; int n = r - l + 1; int a1 = 1 << 30, an = -a1; for (int i = l; i <= r; ++i) { s.insert(nums[i]); a1 = min(a1, nums[i]); an = max(an, nums[i]); } if ((an - a1) % (n - 1)) { return false; } int d = (an - a1) / (n - 1); for (int i = 1; i < n; ++i) { if (!s.count(a1 + (i - 1) * d)) { return false; } } return true; }; for (int i = 0; i < l.size(); ++i) { ans.push_back(check(nums, l[i], r[i])); } return ans; } };
-
class Solution: def checkArithmeticSubarrays( self, nums: List[int], l: List[int], r: List[int] ) -> List[bool]: def check(nums, l, r): n = r - l + 1 s = set(nums[l : l + n]) a1, an = min(nums[l : l + n]), max(nums[l : l + n]) d, mod = divmod(an - a1, n - 1) return mod == 0 and all((a1 + (i - 1) * d) in s for i in range(1, n)) return [check(nums, left, right) for left, right in zip(l, r)]
-
func checkArithmeticSubarrays(nums []int, l []int, r []int) (ans []bool) { check := func(nums []int, l, r int) bool { s := map[int]struct{}{} n := r - l + 1 a1, an := 1<<30, -(1 << 30) for _, x := range nums[l : r+1] { s[x] = struct{}{} if a1 > x { a1 = x } if an < x { an = x } } if (an-a1)%(n-1) != 0 { return false } d := (an - a1) / (n - 1) for i := 1; i < n; i++ { if _, ok := s[a1+(i-1)*d]; !ok { return false } } return true } for i := range l { ans = append(ans, check(nums, l[i], r[i])) } return }
-
function checkArithmeticSubarrays(nums: number[], l: number[], r: number[]): boolean[] { const check = (nums: number[], l: number, r: number): boolean => { const s = new Set<number>(); const n = r - l + 1; let a1 = 1 << 30; let an = -a1; for (let i = l; i <= r; ++i) { s.add(nums[i]); a1 = Math.min(a1, nums[i]); an = Math.max(an, nums[i]); } if ((an - a1) % (n - 1) !== 0) { return false; } const d = Math.floor((an - a1) / (n - 1)); for (let i = 1; i < n; ++i) { if (!s.has(a1 + (i - 1) * d)) { return false; } } return true; }; const ans: boolean[] = []; for (let i = 0; i < l.length; ++i) { ans.push(check(nums, l[i], r[i])); } return ans; }
-
class Solution { public bool Check(int[] arr) { Array.Sort(arr); int diff = arr[1] - arr[0]; for (int i = 2; i < arr.Length; i++) { if (arr[i] - arr[i - 1] != diff) { return false; } } return true; } public IList<bool> CheckArithmeticSubarrays(int[] nums, int[] l, int[] r) { List<bool> ans = new List<bool>(); for (int i = 0; i < l.Length; i++) { int[] arr = new int[r[i] - l[i] + 1]; for (int j = 0; j < arr.Length; j++) { arr[j] = nums[l[i] + j]; } ans.Add(Check(arr)); } return ans; } }
-
impl Solution { pub fn check_arithmetic_subarrays(nums: Vec<i32>, l: Vec<i32>, r: Vec<i32>) -> Vec<bool> { let m = l.len(); let mut res = vec![true; m]; for i in 0..m { let mut arr = nums[l[i] as usize..=r[i] as usize].to_vec(); arr.sort(); for j in 2..arr.len() { if arr[j - 2] - arr[j - 1] != arr[j - 1] - arr[j] { res[i] = false; break; } } } res } }