Welcome to Subscribe On Youtube

1630. Arithmetic Subarrays

Description

A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0] for all valid i.

For example, these are arithmetic sequences:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

The following sequence is not arithmetic:

1, 1, 2, 5, 7

You are given an array of n integers, nums, and two arrays of m integers each, l and r, representing the m range queries, where the ith query is the range [l[i], r[i]]. All the arrays are 0-indexed.

Return a list of boolean elements answer, where answer[i] is true if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]] can be rearranged to form an arithmetic sequence, and false otherwise.

 

Example 1:

Input: nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
Output: [true,false,true]
Explanation:
In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence.
In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence.
In the 2nd query, the subarray is [5,9,3,7]. This can be rearranged as [3,5,7,9], which is an arithmetic sequence.

Example 2:

Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
Output: [false,true,false,false,true,true]

 

Constraints:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -105 <= nums[i] <= 105

Solutions

  • class Solution {
        public List<Boolean> checkArithmeticSubarrays(int[] nums, int[] l, int[] r) {
            List<Boolean> ans = new ArrayList<>();
            for (int i = 0; i < l.length; ++i) {
                ans.add(check(nums, l[i], r[i]));
            }
            return ans;
        }
    
        private boolean check(int[] nums, int l, int r) {
            Set<Integer> s = new HashSet<>();
            int n = r - l + 1;
            int a1 = 1 << 30, an = -a1;
            for (int i = l; i <= r; ++i) {
                s.add(nums[i]);
                a1 = Math.min(a1, nums[i]);
                an = Math.max(an, nums[i]);
            }
            if ((an - a1) % (n - 1) != 0) {
                return false;
            }
            int d = (an - a1) / (n - 1);
            for (int i = 1; i < n; ++i) {
                if (!s.contains(a1 + (i - 1) * d)) {
                    return false;
                }
            }
            return true;
        }
    }
    
  • class Solution {
    public:
        vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) {
            vector<bool> ans;
            auto check = [](vector<int>& nums, int l, int r) {
                unordered_set<int> s;
                int n = r - l + 1;
                int a1 = 1 << 30, an = -a1;
                for (int i = l; i <= r; ++i) {
                    s.insert(nums[i]);
                    a1 = min(a1, nums[i]);
                    an = max(an, nums[i]);
                }
                if ((an - a1) % (n - 1)) {
                    return false;
                }
                int d = (an - a1) / (n - 1);
                for (int i = 1; i < n; ++i) {
                    if (!s.count(a1 + (i - 1) * d)) {
                        return false;
                    }
                }
                return true;
            };
            for (int i = 0; i < l.size(); ++i) {
                ans.push_back(check(nums, l[i], r[i]));
            }
            return ans;
        }
    };
    
  • class Solution:
        def checkArithmeticSubarrays(
            self, nums: List[int], l: List[int], r: List[int]
        ) -> List[bool]:
            def check(nums, l, r):
                n = r - l + 1
                s = set(nums[l : l + n])
                a1, an = min(nums[l : l + n]), max(nums[l : l + n])
                d, mod = divmod(an - a1, n - 1)
                return mod == 0 and all((a1 + (i - 1) * d) in s for i in range(1, n))
    
            return [check(nums, left, right) for left, right in zip(l, r)]
    
    
  • func checkArithmeticSubarrays(nums []int, l []int, r []int) (ans []bool) {
    	check := func(nums []int, l, r int) bool {
    		s := map[int]struct{}{}
    		n := r - l + 1
    		a1, an := 1<<30, -(1 << 30)
    		for _, x := range nums[l : r+1] {
    			s[x] = struct{}{}
    			if a1 > x {
    				a1 = x
    			}
    			if an < x {
    				an = x
    			}
    		}
    		if (an-a1)%(n-1) != 0 {
    			return false
    		}
    		d := (an - a1) / (n - 1)
    		for i := 1; i < n; i++ {
    			if _, ok := s[a1+(i-1)*d]; !ok {
    				return false
    			}
    		}
    		return true
    	}
    	for i := range l {
    		ans = append(ans, check(nums, l[i], r[i]))
    	}
    	return
    }
    
  • function checkArithmeticSubarrays(nums: number[], l: number[], r: number[]): boolean[] {
        const check = (nums: number[], l: number, r: number): boolean => {
            const s = new Set<number>();
            const n = r - l + 1;
            let a1 = 1 << 30;
            let an = -a1;
            for (let i = l; i <= r; ++i) {
                s.add(nums[i]);
                a1 = Math.min(a1, nums[i]);
                an = Math.max(an, nums[i]);
            }
            if ((an - a1) % (n - 1) !== 0) {
                return false;
            }
            const d = Math.floor((an - a1) / (n - 1));
            for (let i = 1; i < n; ++i) {
                if (!s.has(a1 + (i - 1) * d)) {
                    return false;
                }
            }
            return true;
        };
        const ans: boolean[] = [];
        for (let i = 0; i < l.length; ++i) {
            ans.push(check(nums, l[i], r[i]));
        }
        return ans;
    }
    
    
  • class Solution {
        public bool Check(int[] arr) {
            Array.Sort(arr);
            int diff = arr[1] - arr[0];
            for (int i = 2; i < arr.Length; i++) {
                if (arr[i] - arr[i - 1] != diff) {
                    return false;
                }
            }
            return true;
        }
    
        public IList<bool> CheckArithmeticSubarrays(int[] nums, int[] l, int[] r) {
            List<bool> ans = new List<bool>();
            for (int i = 0; i < l.Length; i++) {
                int[] arr = new int[r[i] - l[i] + 1];
                for (int j = 0; j < arr.Length; j++) {
                    arr[j] = nums[l[i] + j];
                }
                ans.Add(Check(arr));
            }
            return ans;
        }
    }
    
    
    
  • impl Solution {
        pub fn check_arithmetic_subarrays(nums: Vec<i32>, l: Vec<i32>, r: Vec<i32>) -> Vec<bool> {
            let m = l.len();
            let mut res = vec![true; m];
            for i in 0..m {
                let mut arr = nums[l[i] as usize..=r[i] as usize].to_vec();
                arr.sort();
                for j in 2..arr.len() {
                    if arr[j - 2] - arr[j - 1] != arr[j - 1] - arr[j] {
                        res[i] = false;
                        break;
                    }
                }
            }
            res
        }
    }
    
    

All Problems

All Solutions