Welcome to Subscribe On Youtube
1584. Min Cost to Connect All Points
Description
You are given an array points representing integer coordinates of some points on a 2D-plane, where points[i] = [xi, yi].
The cost of connecting two points [xi, yi] and [xj, yj] is the manhattan distance between them: |xi - xj| + |yi - yj|, where |val| denotes the absolute value of val.
Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.
Example 1:

Input: points = [[0,0],[2,2],[3,10],[5,2],[7,0]] Output: 20 Explanation:We can connect the points as shown above to get the minimum cost of 20. Notice that there is a unique path between every pair of points.
Example 2:
Input: points = [[3,12],[-2,5],[-4,1]] Output: 18
Constraints:
1 <= points.length <= 1000-106 <= xi, yi <= 106- All pairs
(xi, yi)are distinct.
Solutions
-
class Solution { public int minCostConnectPoints(int[][] points) { final int inf = 1 << 30; int n = points.length; int[][] g = new int[n][n]; for (int i = 0; i < n; ++i) { int x1 = points[i][0], y1 = points[i][1]; for (int j = i + 1; j < n; ++j) { int x2 = points[j][0], y2 = points[j][1]; int t = Math.abs(x1 - x2) + Math.abs(y1 - y2); g[i][j] = t; g[j][i] = t; } } int[] dist = new int[n]; boolean[] vis = new boolean[n]; Arrays.fill(dist, inf); dist[0] = 0; int ans = 0; for (int i = 0; i < n; ++i) { int j = -1; for (int k = 0; k < n; ++k) { if (!vis[k] && (j == -1 || dist[k] < dist[j])) { j = k; } } vis[j] = true; ans += dist[j]; for (int k = 0; k < n; ++k) { if (!vis[k]) { dist[k] = Math.min(dist[k], g[j][k]); } } } return ans; } } -
class Solution { public: int minCostConnectPoints(vector<vector<int>>& points) { int n = points.size(); int g[n][n]; for (int i = 0; i < n; ++i) { int x1 = points[i][0], y1 = points[i][1]; for (int j = i + 1; j < n; ++j) { int x2 = points[j][0], y2 = points[j][1]; int t = abs(x1 - x2) + abs(y1 - y2); g[i][j] = t; g[j][i] = t; } } int dist[n]; bool vis[n]; memset(dist, 0x3f, sizeof(dist)); memset(vis, false, sizeof(vis)); dist[0] = 0; int ans = 0; for (int i = 0; i < n; ++i) { int j = -1; for (int k = 0; k < n; ++k) { if (!vis[k] && (j == -1 || dist[k] < dist[j])) { j = k; } } vis[j] = true; ans += dist[j]; for (int k = 0; k < n; ++k) { if (!vis[k]) { dist[k] = min(dist[k], g[j][k]); } } } return ans; } }; -
class Solution: def minCostConnectPoints(self, points: List[List[int]]) -> int: n = len(points) g = [[0] * n for _ in range(n)] dist = [inf] * n vis = [False] * n for i, (x1, y1) in enumerate(points): for j in range(i + 1, n): x2, y2 = points[j] t = abs(x1 - x2) + abs(y1 - y2) g[i][j] = g[j][i] = t dist[0] = 0 ans = 0 for _ in range(n): i = -1 for j in range(n): if not vis[j] and (i == -1 or dist[j] < dist[i]): i = j vis[i] = True ans += dist[i] for j in range(n): if not vis[j]: dist[j] = min(dist[j], g[i][j]) return ans -
func minCostConnectPoints(points [][]int) (ans int) { n := len(points) g := make([][]int, n) vis := make([]bool, n) dist := make([]int, n) for i := range g { g[i] = make([]int, n) dist[i] = 1 << 30 } for i := range g { x1, y1 := points[i][0], points[i][1] for j := i + 1; j < n; j++ { x2, y2 := points[j][0], points[j][1] t := abs(x1-x2) + abs(y1-y2) g[i][j] = t g[j][i] = t } } dist[0] = 0 for i := 0; i < n; i++ { j := -1 for k := 0; k < n; k++ { if !vis[k] && (j == -1 || dist[k] < dist[j]) { j = k } } vis[j] = true ans += dist[j] for k := 0; k < n; k++ { if !vis[k] { dist[k] = min(dist[k], g[j][k]) } } } return } func abs(x int) int { if x < 0 { return -x } return x } -
function minCostConnectPoints(points: number[][]): number { const n = points.length; const g: number[][] = Array(n) .fill(0) .map(() => Array(n).fill(0)); const dist: number[] = Array(n).fill(1 << 30); const vis: boolean[] = Array(n).fill(false); for (let i = 0; i < n; ++i) { const [x1, y1] = points[i]; for (let j = i + 1; j < n; ++j) { const [x2, y2] = points[j]; const t = Math.abs(x1 - x2) + Math.abs(y1 - y2); g[i][j] = t; g[j][i] = t; } } let ans = 0; dist[0] = 0; for (let i = 0; i < n; ++i) { let j = -1; for (let k = 0; k < n; ++k) { if (!vis[k] && (j === -1 || dist[k] < dist[j])) { j = k; } } vis[j] = true; ans += dist[j]; for (let k = 0; k < n; ++k) { if (!vis[k]) { dist[k] = Math.min(dist[k], g[j][k]); } } } return ans; }
We can connect the points as shown above to get the minimum cost of 20.
Notice that there is a unique path between every pair of points.