##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1493.html

# 1493. Longest Subarray of 1’s After Deleting One Element (Medium)

Given a binary array nums, you should delete one element from it.

Return the size of the longest non-empty subarray containing only 1's in the resulting array.

Return 0 if there is no such subarray.

Example 1:

Input: nums = [1,1,0,1]
Output: 3
Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's.

Example 2:

Input: nums = [0,1,1,1,0,1,1,0,1]
Output: 5
Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1].

Example 3:

Input: nums = [1,1,1]
Output: 2
Explanation: You must delete one element.

Example 4:

Input: nums = [1,1,0,0,1,1,1,0,1]
Output: 4


Example 5:

Input: nums = [0,0,0]
Output: 0


Constraints:

• 1 <= nums.length <= 10^5
• nums[i] is either 0 or 1.

Related Topics:
Array

## Solution 1.

prev2 and prev are the indexes of the non-one values we’ve seen most recently during scanning.

prev2              prev            i
0       1 1 1     0      1 1 1   0


If the array only contains 1, then return N - 1. Otherwise, the answer is the maximum of i - prev2 - 2.

// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int N = A.size(), prev2 = -1, prev = -1, ans = 0;
for (int i = 0; i <= N; ++i) {
if (i < N && A[i] == 1) continue;
if (i == N && prev == -1) return N - 1;
if (prev != -1) ans = max(ans, i - prev2 - 2);
prev2 = prev;
prev = i;
}
return ans;
}
};


## Solution 2. Sliding Window

Sliding window [i, j) with at most 2 zeros.

1. Keep extending the right edge until the window becomes invalid, i.e. more than one zero, or can’t be extended any more.
2. Now cnt can be either 0, 1 or 2. The corresponding size after deleting one element is j - i - max(cnt, 1).
3. Then we shrink the left edge until cnt becomes valid, i.e. cnt <= 1.
4. Back to step 1 until the window reaches the end.
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0, ans = 0;
while (j < N) {
while (j < N && cnt <= 1) cnt += A[j++] == 0;
ans = max(ans, j - i - max(cnt, 1));
while (cnt > 1) cnt -= A[i++] == 0;
}
return ans;
}
};


## Solution 3. Sliding Window

Sliding window [i, j) with at most 1 zero.

1. Keep extending the right edge until it reaches the end or one more extension will include 2 zeros.
2. j - i - 1 is the corresponding answer for this window.
3. Shrink the left edge until cnt == 0.
4. Back to step 1 until the window reaches the end.
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0, ans = 0;
while (j < N) {
while (j < N && cnt + (A[j] == 0) <= 1) cnt += A[j++] == 0;
ans = max(ans, j - i - 1);
while (cnt == 1) cnt -= A[i++] == 0;
}
return ans;
}
};


## Solution 4. Sliding Window

Sliding window [i, j] with at most 1 zero.

1. Keep extending the right edge.
2. Once the cnt > 1, shrink the left edge.
3. The size for this window with one deletion is j - i.
4. Back to step 1 until it reaches the end.

This solution is simpler than the previous one because we don’t need to think about when to stop the extension of the right edge.

// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0, ans = 0;
for (; j < N; ++j) {
cnt += A[j] == 0;
while (cnt > 1) cnt -= A[i++] == 0;
ans = max(ans, j - i);
}
return ans;
}
};


## Solution 5. Sliding Window

Sliding window [i - ans + 1, i] with at most 1 zero that never shrinks.

// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int N = A.size(), cnt = 0, ans = 0;
for (int i = 0; i < N; ++i) {
cnt += A[i] == 0;
if (cnt > 1) cnt -= A[i - ans] == 0;
else ++ans;
}
return ans - 1;
}
};


Sliding window [i, j] with at most 1 zero taht never shrinks.

// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0;
for (; j < N; ++j) {
cnt += A[j] == 0;
if (cnt > 1) cnt -= A[i++] == 0;
}
return j - i - 1;
}
};

• class Solution {
public int longestSubarray(int[] nums) {
int length = nums.length;
int index = 0;
while (index < length && nums[index] == 0)
index++;
if (index == length)
return 0;
List<Integer> ones = new ArrayList<Integer>();
List<Integer> zeros = new ArrayList<Integer>();
int prev = 1;
int count = 1;
for (int i = index + 1; i < length; i++) {
int num = nums[i];
if (num == prev)
count++;
else {
if (prev == 1)
else
prev = num;
count = 1;
}
}
if (prev == 1)
else
if (index == 0 && zeros.size() == 0)
return ones.get(0) - 1;
int maxLength = ones.get(0);
int size = ones.size();
for (int i = 1; i < size; i++) {
int zero = zeros.get(i - 1);
int prevOne = ones.get(i - 1);
int one = ones.get(i);
maxLength = Math.max(maxLength, one);
if (zero == 1)
maxLength = Math.max(maxLength, prevOne + one);
}
return maxLength;
}
}

############

class Solution {
public int longestSubarray(int[] nums) {
int n = nums.length;
int[] left = new int[n];
int[] right = new int[n];
for (int i = 1; i < n; ++i) {
if (nums[i - 1] == 1) {
left[i] = left[i - 1] + 1;
}
}
for (int i = n - 2; i >= 0; --i) {
if (nums[i + 1] == 1) {
right[i] = right[i + 1] + 1;
}
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = Math.max(ans, left[i] + right[i]);
}
return ans;
}
}

• // OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int N = A.size(), prev2 = -1, prev = -1, ans = 0;
for (int i = 0; i <= N; ++i) {
if (i < N && A[i] == 1) continue;
if (i == N && prev == -1) return N - 1;
if (prev != -1) ans = max(ans, i - prev2 - 2);
prev2 = prev;
prev = i;
}
return ans;
}
};

• class Solution:
def longestSubarray(self, nums: List[int]) -> int:
n = len(nums)
left = [0] * n
right = [0] * n
for i in range(1, n):
if nums[i - 1] == 1:
left[i] = left[i - 1] + 1
for i in range(n - 2, -1, -1):
if nums[i + 1] == 1:
right[i] = right[i + 1] + 1
return max(left[i] + right[i] for i in range(n))


• func longestSubarray(nums []int) int {
n := len(nums)
left := make([]int, n)
right := make([]int, n)
for i := 1; i < n; i++ {
if nums[i-1] == 1 {
left[i] = left[i-1] + 1
}
}
for i := n - 2; i >= 0; i-- {
if nums[i+1] == 1 {
right[i] = right[i+1] + 1
}
}
ans := 0
for i := 0; i < n; i++ {
ans = max(ans, left[i]+right[i])
}
return ans
}

func max(a, b int) int {
if a > b {
return a
}
return b
}