Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1492.html

1492. The kth Factor of n (Medium)

Given two positive integers n and k.

A factor of an integer n is defined as an integer i where n % i == 0.

Consider a list of all factors of n sorted in ascending order, return the kth factor in this list or return -1 if n has less than k factors.

 

Example 1:

Input: n = 12, k = 3
Output: 3
Explanation: Factors list is [1, 2, 3, 4, 6, 12], the 3rd factor is 3.

Example 2:

Input: n = 7, k = 2
Output: 7
Explanation: Factors list is [1, 7], the 2nd factor is 7.

Example 3:

Input: n = 4, k = 4
Output: -1
Explanation: Factors list is [1, 2, 4], there is only 3 factors. We should return -1.

Example 4:

Input: n = 1, k = 1
Output: 1
Explanation: Factors list is [1], the 1st factor is 1.

Example 5:

Input: n = 1000, k = 3
Output: 4
Explanation: Factors list is [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000].

 

Constraints:

  • 1 <= k <= n <= 1000

Related Topics:
Math

Solution 1.

  • class Solution {
        public int kthFactor(int n, int k) {
            if (k == 1)
                return 1;
            int sqrt = (int) Math.sqrt(n);
            List<Integer> factors = new ArrayList<Integer>();
            for (int i = 1; i <= sqrt; i++) {
                if (n % i == 0)
                    factors.add(i);
            }
            int size = factors.size();
            int factorsCount = sqrt * sqrt == n ? size * 2 - 1 : size * 2;
            if (k > factorsCount)
                return -1;
            else if (k <= size)
                return factors.get(k - 1);
            else {
                int index = factorsCount - k;
                return n / factors.get(index);
            }
        }
    }
    
    ############
    
    class Solution {
        public int kthFactor(int n, int k) {
            int i = 1;
            for (; i < n / i; ++i) {
                if (n % i == 0 && (--k == 0)) {
                    return i;
                }
            }
            if (i * i != n) {
                --i;
            }
            for (; i > 0; --i) {
                if (n % (n / i) == 0 && (--k == 0)) {
                    return n / i;
                }
            }
            return -1;
        }
    }
    
  • // OJ: https://leetcode.com/problems/the-kth-factor-of-n/
    // Time: O(sqrt(N))
    // Space: O(1)
    class Solution {
    public:
        int kthFactor(int n, int k) {
            int i = 1;
            for (; i * i <= n; ++i) {
                if (n % i) continue;
                if (--k == 0) return i;
            }
            --i;
            if (i * i == n) --i;
            for (; i >= 1; --i) {
                if (n % i) continue;
                if (--k == 0) return n / i;
            }
            return -1;
        }
    };
    
  • class Solution:
        def kthFactor(self, n: int, k: int) -> int:
            i = 1
            while i * i < n:
                if n % i == 0:
                    k -= 1
                    if k == 0:
                        return i
                i += 1
            if i * i != n:
                i -= 1
            while i:
                if (n % (n // i)) == 0:
                    k -= 1
                    if k == 0:
                        return n // i
                i -= 1
            return -1
    
    
    
  • func kthFactor(n int, k int) int {
    	i := 1
    	for ; i < n/i; i++ {
    		if n%i == 0 {
    			k--
    			if k == 0 {
    				return i
    			}
    		}
    	}
    	if i*i != n {
    		i--
    	}
    	for ; i > 0; i-- {
    		if n%(n/i) == 0 {
    			k--
    			if k == 0 {
    				return n / i
    			}
    		}
    	}
    	return -1
    }
    

All Problems

All Solutions