Welcome to Subscribe On Youtube
1388. Pizza With 3n Slices
Description
There is a pizza with 3n
slices of varying size, you and your friends will take slices of pizza as follows:
- You will pick any pizza slice.
- Your friend Alice will pick the next slice in the anti-clockwise direction of your pick.
- Your friend Bob will pick the next slice in the clockwise direction of your pick.
- Repeat until there are no more slices of pizzas.
Given an integer array slices
that represent the sizes of the pizza slices in a clockwise direction, return the maximum possible sum of slice sizes that you can pick.
Example 1:
Input: slices = [1,2,3,4,5,6] Output: 10 Explanation: Pick pizza slice of size 4, Alice and Bob will pick slices with size 3 and 5 respectively. Then Pick slices with size 6, finally Alice and Bob will pick slice of size 2 and 1 respectively. Total = 4 + 6.
Example 2:
Input: slices = [8,9,8,6,1,1] Output: 16 Explanation: Pick pizza slice of size 8 in each turn. If you pick slice with size 9 your partners will pick slices of size 8.
Constraints:
3 * n == slices.length
1 <= slices.length <= 500
1 <= slices[i] <= 1000
Solutions
Solution 1: Dynamic Programming
We can transform this problem into: In a circular array of length
The proof is as follows:
- When
, we can choose any number in the array.n=1 - When
, there must exist a number such that there are two consecutive numbers on one side of it that have not been selected, and at least one number on the other side has not been selected. Therefore, we can remove this number and the numbers on both sides of it from the array, and then the remainingn>1 numbers form a new circular array. The problem scale is reduced to selecting3(n−1) non-adjacent numbers in a circular array of lengthn−1 , so that the sum of these3(n−1) numbers is maximized.n−1
Therefore, the problem we need to solve can be transformed into: In a circular array of length
In a circular array, if the first number is selected, the last number cannot be selected. If the last number is selected, the first number cannot be selected. Therefore, we can split the circular array into two arrays, one is without the first number, and the other is without the last number. Then solve the maximum value of these two arrays separately, and finally take the larger of the two maximum values.
We use a function
The solution method of function
We denote the length of array
Consider
Finally, return
The time complexity is
-
class Solution { private int n; public int maxSizeSlices(int[] slices) { n = slices.length / 3; int[] nums = new int[slices.length - 1]; System.arraycopy(slices, 1, nums, 0, nums.length); int a = g(nums); System.arraycopy(slices, 0, nums, 0, nums.length); int b = g(nums); return Math.max(a, b); } private int g(int[] nums) { int m = nums.length; int[][] f = new int[m + 1][n + 1]; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { f[i][j] = Math.max(f[i - 1][j], (i >= 2 ? f[i - 2][j - 1] : 0) + nums[i - 1]); } } return f[m][n]; } }
-
class Solution { public: int maxSizeSlices(vector<int>& slices) { int n = slices.size() / 3; auto g = [&](vector<int>& nums) -> int { int m = nums.size(); int f[m + 1][n + 1]; memset(f, 0, sizeof f); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { f[i][j] = max(f[i - 1][j], (i >= 2 ? f[i - 2][j - 1] : 0) + nums[i - 1]); } } return f[m][n]; }; vector<int> nums(slices.begin(), slices.end() - 1); int a = g(nums); nums = vector<int>(slices.begin() + 1, slices.end()); int b = g(nums); return max(a, b); } };
-
class Solution: def maxSizeSlices(self, slices: List[int]) -> int: def g(nums: List[int]) -> int: m = len(nums) f = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): f[i][j] = max( f[i - 1][j], (f[i - 2][j - 1] if i >= 2 else 0) + nums[i - 1] ) return f[m][n] n = len(slices) // 3 a, b = g(slices[:-1]), g(slices[1:]) return max(a, b)
-
func maxSizeSlices(slices []int) int { n := len(slices) / 3 g := func(nums []int) int { m := len(nums) f := make([][]int, m+1) for i := range f { f[i] = make([]int, n+1) } for i := 1; i <= m; i++ { for j := 1; j <= n; j++ { f[i][j] = max(f[i-1][j], nums[i-1]) if i >= 2 { f[i][j] = max(f[i][j], f[i-2][j-1]+nums[i-1]) } } } return f[m][n] } a, b := g(slices[:len(slices)-1]), g(slices[1:]) return max(a, b) }
-
function maxSizeSlices(slices: number[]): number { const n = Math.floor(slices.length / 3); const g = (nums: number[]): number => { const m = nums.length; const f: number[][] = Array(m + 1) .fill(0) .map(() => Array(n + 1).fill(0)); for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { f[i][j] = Math.max(f[i - 1][j], (i > 1 ? f[i - 2][j - 1] : 0) + nums[i - 1]); } } return f[m][n]; }; const a = g(slices.slice(0, -1)); const b = g(slices.slice(1)); return Math.max(a, b); }