Welcome to Subscribe On Youtube
1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance
Description
There are n
cities numbered from 0
to n-1
. Given the array edges
where edges[i] = [fromi, toi, weighti]
represents a bidirectional and weighted edge between cities fromi
and toi
, and given the integer distanceThreshold
.
Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold
, If there are multiple such cities, return the city with the greatest number.
Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.
Example 1:
Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 Output: 3 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 4 for each city are: City 0 -> [City 1, City 2] City 1 -> [City 0, City 2, City 3] City 2 -> [City 0, City 1, City 3] City 3 -> [City 1, City 2] Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.
Example 2:
Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 Output: 0 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 2 for each city are: City 0 -> [City 1] City 1 -> [City 0, City 4] City 2 -> [City 3, City 4] City 3 -> [City 2, City 4] City 4 -> [City 1, City 2, City 3] The city 0 has 1 neighboring city at a distanceThreshold = 2.
Constraints:
2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
- All pairs
(fromi, toi)
are distinct.
Solutions
-
class Solution { private int n; private int[][] g; private int[] dist; private boolean[] vis; private final int inf = 1 << 30; private int distanceThreshold; public int findTheCity(int n, int[][] edges, int distanceThreshold) { this.n = n; this.distanceThreshold = distanceThreshold; g = new int[n][n]; dist = new int[n]; vis = new boolean[n]; for (var e : g) { Arrays.fill(e, inf); } for (var e : edges) { int f = e[0], t = e[1], w = e[2]; g[f][t] = w; g[t][f] = w; } int ans = n, cnt = inf; for (int i = n - 1; i >= 0; --i) { int t = dijkstra(i); if (t < cnt) { cnt = t; ans = i; } } return ans; } private int dijkstra(int u) { Arrays.fill(dist, inf); Arrays.fill(vis, false); dist[u] = 0; for (int i = 0; i < n; ++i) { int k = -1; for (int j = 0; j < n; ++j) { if (!vis[j] && (k == -1 || dist[k] > dist[j])) { k = j; } } vis[k] = true; for (int j = 0; j < n; ++j) { dist[j] = Math.min(dist[j], dist[k] + g[k][j]); } } int cnt = 0; for (int d : dist) { if (d <= distanceThreshold) { ++cnt; } } return cnt; } }
-
class Solution { public: int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) { int g[n][n]; int dist[n]; bool vis[n]; memset(g, 0x3f, sizeof(g)); for (auto& e : edges) { int f = e[0], t = e[1], w = e[2]; g[f][t] = g[t][f] = w; } auto dijkstra = [&](int u) { memset(dist, 0x3f, sizeof(dist)); memset(vis, 0, sizeof(vis)); dist[u] = 0; for (int i = 0; i < n; ++i) { int k = -1; for (int j = 0; j < n; ++j) { if (!vis[j] && (k == -1 || dist[j] < dist[k])) { k = j; } } vis[k] = true; for (int j = 0; j < n; ++j) { dist[j] = min(dist[j], dist[k] + g[k][j]); } } return count_if(dist, dist + n, [&](int d) { return d <= distanceThreshold; }); }; int ans = n, cnt = n + 1; for (int i = n - 1; ~i; --i) { int t = dijkstra(i); if (t < cnt) { cnt = t; ans = i; } } return ans; } };
-
class Solution: def findTheCity( self, n: int, edges: List[List[int]], distanceThreshold: int ) -> int: def dijkstra(u: int) -> int: dist = [inf] * n dist[u] = 0 vis = [False] * n for _ in range(n): k = -1 for j in range(n): if not vis[j] and (k == -1 or dist[k] > dist[j]): k = j vis[k] = True for j in range(n): # dist[j] = min(dist[j], dist[k] + g[k][j]) if dist[k] + g[k][j] < dist[j]: dist[j] = dist[k] + g[k][j] return sum(d <= distanceThreshold for d in dist) g = [[inf] * n for _ in range(n)] for f, t, w in edges: g[f][t] = g[t][f] = w ans, cnt = n, inf for i in range(n - 1, -1, -1): if (t := dijkstra(i)) < cnt: cnt, ans = t, i return ans
-
func findTheCity(n int, edges [][]int, distanceThreshold int) int { g := make([][]int, n) dist := make([]int, n) vis := make([]bool, n) const inf int = 1e7 for i := range g { g[i] = make([]int, n) for j := range g[i] { g[i][j] = inf } } for _, e := range edges { f, t, w := e[0], e[1], e[2] g[f][t], g[t][f] = w, w } dijkstra := func(u int) (cnt int) { for i := range vis { vis[i] = false dist[i] = inf } dist[u] = 0 for i := 0; i < n; i++ { k := -1 for j := 0; j < n; j++ { if !vis[j] && (k == -1 || dist[j] < dist[k]) { k = j } } vis[k] = true for j := 0; j < n; j++ { dist[j] = min(dist[j], dist[k]+g[k][j]) } } for _, d := range dist { if d <= distanceThreshold { cnt++ } } return } ans, cnt := n, inf for i := n - 1; i >= 0; i-- { if t := dijkstra(i); t < cnt { cnt = t ans = i } } return ans }
-
function findTheCity(n: number, edges: number[][], distanceThreshold: number): number { const g: number[][] = Array.from({ length: n }, () => Array(n).fill(Infinity)); const dist: number[] = Array(n).fill(Infinity); const vis: boolean[] = Array(n).fill(false); for (const [f, t, w] of edges) { g[f][t] = g[t][f] = w; } const dijkstra = (u: number): number => { dist.fill(Infinity); vis.fill(false); dist[u] = 0; for (let i = 0; i < n; ++i) { let k = -1; for (let j = 0; j < n; ++j) { if (!vis[j] && (k === -1 || dist[j] < dist[k])) { k = j; } } vis[k] = true; for (let j = 0; j < n; ++j) { dist[j] = Math.min(dist[j], dist[k] + g[k][j]); } } return dist.filter(d => d <= distanceThreshold).length; }; let ans = n; let cnt = Infinity; for (let i = n - 1; i >= 0; --i) { const t = dijkstra(i); if (t < cnt) { cnt = t; ans = i; } } return ans; }
-
function findTheCity(n, edges, distanceThreshold) { const g = Array.from({ length: n }, () => Array(n).fill(Infinity)); const dist = Array(n).fill(Infinity); const vis = Array(n).fill(false); for (const [f, t, w] of edges) { g[f][t] = g[t][f] = w; } const dijkstra = u => { dist.fill(Infinity); vis.fill(false); dist[u] = 0; for (let i = 0; i < n; ++i) { let k = -1; for (let j = 0; j < n; ++j) { if (!vis[j] && (k === -1 || dist[j] < dist[k])) { k = j; } } vis[k] = true; for (let j = 0; j < n; ++j) { dist[j] = Math.min(dist[j], dist[k] + g[k][j]); } } return dist.filter(d => d <= distanceThreshold).length; }; let ans = n; let cnt = Infinity; for (let i = n - 1; i >= 0; --i) { const t = dijkstra(i); if (t < cnt) { cnt = t; ans = i; } } return ans; }