Welcome to Subscribe On Youtube
1330. Reverse Subarray To Maximize Array Value
Description
You are given an integer array nums. The value of this array is defined as the sum of |nums[i] - nums[i + 1]| for all 0 <= i < nums.length - 1.
You are allowed to select any subarray of the given array and reverse it. You can perform this operation only once.
Find maximum possible value of the final array.
Example 1:
Input: nums = [2,3,1,5,4] Output: 10 Explanation: By reversing the subarray [3,1,5] the array becomes [2,5,1,3,4] whose value is 10.
Example 2:
Input: nums = [2,4,9,24,2,1,10] Output: 68
Constraints:
1 <= nums.length <= 3 * 104-105 <= nums[i] <= 105
Solutions
-
class Solution { public int maxValueAfterReverse(int[] nums) { int n = nums.length; int s = 0; for (int i = 0; i < n - 1; ++i) { s += Math.abs(nums[i] - nums[i + 1]); } int ans = s; for (int i = 0; i < n - 1; ++i) { ans = Math.max( ans, s + Math.abs(nums[0] - nums[i + 1]) - Math.abs(nums[i] - nums[i + 1])); ans = Math.max( ans, s + Math.abs(nums[n - 1] - nums[i]) - Math.abs(nums[i] - nums[i + 1])); } int[] dirs = {1, -1, -1, 1, 1}; final int inf = 1 << 30; for (int k = 0; k < 4; ++k) { int k1 = dirs[k], k2 = dirs[k + 1]; int mx = -inf, mi = inf; for (int i = 0; i < n - 1; ++i) { int a = k1 * nums[i] + k2 * nums[i + 1]; int b = Math.abs(nums[i] - nums[i + 1]); mx = Math.max(mx, a - b); mi = Math.min(mi, a + b); } ans = Math.max(ans, s + Math.max(0, mx - mi)); } return ans; } } -
class Solution { public: int maxValueAfterReverse(vector<int>& nums) { int n = nums.size(); int s = 0; for (int i = 0; i < n - 1; ++i) { s += abs(nums[i] - nums[i + 1]); } int ans = s; for (int i = 0; i < n - 1; ++i) { ans = max(ans, s + abs(nums[0] - nums[i + 1]) - abs(nums[i] - nums[i + 1])); ans = max(ans, s + abs(nums[n - 1] - nums[i]) - abs(nums[i] - nums[i + 1])); } int dirs[5] = {1, -1, -1, 1, 1}; const int inf = 1 << 30; for (int k = 0; k < 4; ++k) { int k1 = dirs[k], k2 = dirs[k + 1]; int mx = -inf, mi = inf; for (int i = 0; i < n - 1; ++i) { int a = k1 * nums[i] + k2 * nums[i + 1]; int b = abs(nums[i] - nums[i + 1]); mx = max(mx, a - b); mi = min(mi, a + b); } ans = max(ans, s + max(0, mx - mi)); } return ans; } }; -
class Solution: def maxValueAfterReverse(self, nums: List[int]) -> int: ans = s = sum(abs(x - y) for x, y in pairwise(nums)) for x, y in pairwise(nums): ans = max(ans, s + abs(nums[0] - y) - abs(x - y)) ans = max(ans, s + abs(nums[-1] - x) - abs(x - y)) for k1, k2 in pairwise((1, -1, -1, 1, 1)): mx, mi = -inf, inf for x, y in pairwise(nums): a = k1 * x + k2 * y b = abs(x - y) mx = max(mx, a - b) mi = min(mi, a + b) ans = max(ans, s + max(mx - mi, 0)) return ans -
func maxValueAfterReverse(nums []int) int { s, n := 0, len(nums) for i, x := range nums[:n-1] { y := nums[i+1] s += abs(x - y) } ans := s for i, x := range nums[:n-1] { y := nums[i+1] ans = max(ans, s+abs(nums[0]-y)-abs(x-y)) ans = max(ans, s+abs(nums[n-1]-x)-abs(x-y)) } dirs := [5]int{1, -1, -1, 1, 1} const inf = 1 << 30 for k := 0; k < 4; k++ { k1, k2 := dirs[k], dirs[k+1] mx, mi := -inf, inf for i, x := range nums[:n-1] { y := nums[i+1] a := k1*x + k2*y b := abs(x - y) mx = max(mx, a-b) mi = min(mi, a+b) } ans = max(ans, s+max(mx-mi, 0)) } return ans } func abs(x int) int { if x < 0 { return -x } return x } -
function maxValueAfterReverse(nums: number[]): number { const n = nums.length; let s = 0; for (let i = 0; i < n - 1; ++i) { s += Math.abs(nums[i] - nums[i + 1]); } let ans = s; for (let i = 0; i < n - 1; ++i) { const d = Math.abs(nums[i] - nums[i + 1]); ans = Math.max(ans, s + Math.abs(nums[0] - nums[i + 1]) - d); ans = Math.max(ans, s + Math.abs(nums[n - 1] - nums[i]) - d); } const dirs = [1, -1, -1, 1, 1]; const inf = 1 << 30; for (let k = 0; k < 4; ++k) { let mx = -inf; let mi = inf; for (let i = 0; i < n - 1; ++i) { const a = dirs[k] * nums[i] + dirs[k + 1] * nums[i + 1]; const b = Math.abs(nums[i] - nums[i + 1]); mx = Math.max(mx, a - b); mi = Math.min(mi, a + b); } ans = Math.max(ans, s + Math.max(0, mx - mi)); } return ans; }