Formatted question description: https://leetcode.ca/all/1312.html
1312. Minimum Insertion Steps to Make a String Palindrome (Hard)
Given a string s
. In one step you can insert any character at any index of the string.
Return the minimum number of steps to make s
palindrome.
A Palindrome String is one that reads the same backward as well as forward.
Example 1:
Input: s = "zzazz" Output: 0 Explanation: The string "zzazz" is already palindrome we don't need any insertions.
Example 2:
Input: s = "mbadm" Output: 2 Explanation: String can be "mbdadbm" or "mdbabdm".
Example 3:
Input: s = "leetcode" Output: 5 Explanation: Inserting 5 characters the string becomes "leetcodocteel".
Example 4:
Input: s = "g" Output: 0
Example 5:
Input: s = "no" Output: 1
Constraints:
1 <= s.length <= 500
- All characters of
s
are lower case English letters.
Related Topics:
Dynamic Programming
Solution 1. DP
This problem is similar to “given two strings s
and t
, count how many insertions are needed to make them the same”.
In this problem, t
is the reversed s
.
Let dp[i][j]
be the minimum insertions needed to make s[0..(i-1)]
and t[0..(j-1)]
the same.
dp[i][j] = dp[i-1][j-1] If s[i-1] == t[j-1]
= 1 + min(dp[i-1][j], dp[i][j-1]) If s[i-1] != t[j-1]
dp[0][i] = dp[i][0] = i
The answer of this problem is dp[N][N] / 2
.
// OJ: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
// Time: O(N^2)
// Space: O(N^2)
class Solution {
public:
int minInsertions(string s) {
int N = s.size();
string t(s.rbegin(), s.rend());
vector<vector<int>> dp(N + 1, vector<int>(N + 1));
for (int i = 0; i <= N; ++i) {
for (int j = 0; j <= N; ++j) {
if (i == 0 || j == 0) dp[i][j] = i + j;
else if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[N][N] / 2;
}
};
Solution 2. DP + Space Optimization
Since dp[i][j]
is only dependent on dp[i-1][j-1]
, dp[i-1][j]
and dp[i][j-1]
, we can reduce the space of dp
array from N * N
to 1 * N
with a temporary variable storing dp[i-1][j-1]
.
// OJ: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int minInsertions(string s) {
int N = s.size();
vector<int> dp(N + 1);
for (int i = 0; i <= N; ++i) {
int prev;
for (int j = 0; j <= N; ++j) {
int cur = dp[j];
if (i == 0 || j == 0) dp[j] = i + j;
else if (s[i - 1] == s[N - j]) dp[j] = prev;
else dp[j] = 1 + min(dp[j], dp[j - 1]);
prev = cur;
}
}
return dp[N] / 2;
}
};;
Solution 3. Longest Palindrome Subsequence
If we know the length of the longest palindrome subsequence of s
is M
, then the answer to this problem would be s.size() - M
.
So we can reuse the solution to 516. Longest Palindromic Subsequence (Medium).
// OJ: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
// Time: O(N^2)
// Space: O(N)
class Solution {
int longestPalindromeSubseq(string &s) {
int N = s.size();
vector<int> dp(N + 1);
for (int i = 1; i <= N; ++i) {
int prev = 0;
for (int j = 1; j <= N; ++j) {
int cur = dp[j];
if (s[i - 1] == s[N - j]) dp[j] = 1 + prev;
else dp[j] = max(dp[j], dp[j - 1]);
prev = cur;
}
}
return dp[N];
}
public:
int minInsertions(string s) {
return s.size() - longestPalindromeSubseq(s);
}
};
Java
class Solution {
public int minInsertions(String s) {
if (s.length() <= 1)
return 0;
StringBuffer sb = new StringBuffer(s);
sb.reverse();
String reverseStr = sb.toString();
int longestCommonSubsequence = longestCommonSubsequence(s, reverseStr);
return s.length() - longestCommonSubsequence;
}
public int longestCommonSubsequence(String str1, String str2) {
int length1 = str1.length(), length2 = str2.length();
int[][] dp = new int[length1 + 1][length2 + 1];
for (int i = 1; i <= length1; i++) {
char c1 = str1.charAt(i - 1);
for (int j = 1; j <= length2; j++) {
char c2 = str2.charAt(j - 1);
if (c1 == c2)
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
int commonLength = dp[length1][length2];
return commonLength;
}
}