Welcome to Subscribe On Youtube
1292. Maximum Side Length of a Square with Sum Less than or Equal to Threshold
Description
Given a m x n
matrix mat
and an integer threshold
, return the maximum side-length of a square with a sum less than or equal to threshold
or return 0
if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4 Output: 2 Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1 Output: 0
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 300
0 <= mat[i][j] <= 104
0 <= threshold <= 105
Solutions
-
class Solution { private int m; private int n; private int threshold; private int[][] s; public int maxSideLength(int[][] mat, int threshold) { m = mat.length; n = mat[0].length; this.threshold = threshold; s = new int[m + 1][n + 1]; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + mat[i - 1][j - 1]; } } int l = 0, r = Math.min(m, n); while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; } private boolean check(int k) { for (int i = 0; i < m - k + 1; ++i) { for (int j = 0; j < n - k + 1; ++j) { if (s[i + k][j + k] - s[i][j + k] - s[i + k][j] + s[i][j] <= threshold) { return true; } } } return false; } }
-
class Solution { public: int maxSideLength(vector<vector<int>>& mat, int threshold) { int m = mat.size(), n = mat[0].size(); int s[m + 1][n + 1]; memset(s, 0, sizeof(s)); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + mat[i - 1][j - 1]; } } auto check = [&](int k) { for (int i = 0; i < m - k + 1; ++i) { for (int j = 0; j < n - k + 1; ++j) { if (s[i + k][j + k] - s[i][j + k] - s[i + k][j] + s[i][j] <= threshold) { return true; } } } return false; }; int l = 0, r = min(m, n); while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; } };
-
class Solution: def maxSideLength(self, mat: List[List[int]], threshold: int) -> int: def check(k: int) -> bool: for i in range(m - k + 1): for j in range(n - k + 1): v = s[i + k][j + k] - s[i][j + k] - s[i + k][j] + s[i][j] if v <= threshold: return True return False m, n = len(mat), len(mat[0]) s = [[0] * (n + 1) for _ in range(m + 1)] for i, row in enumerate(mat, 1): for j, x in enumerate(row, 1): s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + x l, r = 0, min(m, n) while l < r: mid = (l + r + 1) >> 1 if check(mid): l = mid else: r = mid - 1 return l
-
func maxSideLength(mat [][]int, threshold int) int { m, n := len(mat), len(mat[0]) s := make([][]int, m+1) for i := range s { s[i] = make([]int, n+1) } for i := 1; i <= m; i++ { for j := 1; j <= n; j++ { s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + mat[i-1][j-1] } } check := func(k int) bool { for i := 0; i < m-k+1; i++ { for j := 0; j < n-k+1; j++ { if s[i+k][j+k]-s[i][j+k]-s[i+k][j]+s[i][j] <= threshold { return true } } } return false } l, r := 0, min(m, n) for l < r { mid := (l + r + 1) >> 1 if check(mid) { l = mid } else { r = mid - 1 } } return l }
-
function maxSideLength(mat: number[][], threshold: number): number { const m = mat.length; const n = mat[0].length; const s: number[][] = Array(m + 1) .fill(0) .map(() => Array(n + 1).fill(0)); for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + mat[i - 1][j - 1]; } } const check = (k: number): boolean => { for (let i = 0; i < m - k + 1; ++i) { for (let j = 0; j < n - k + 1; ++j) { if (s[i + k][j + k] - s[i + k][j] - s[i][j + k] + s[i][j] <= threshold) { return true; } } } return false; }; let l = 0; let r = Math.min(m, n); while (l < r) { const mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; }