Welcome to Subscribe On Youtube
1170. Compare Strings by Frequency of the Smallest Character
Description
Let the function f(s)
be the frequency of the lexicographically smallest character in a non-empty string s
. For example, if s = "dcce"
then f(s) = 2
because the lexicographically smallest character is 'c'
, which has a frequency of 2.
You are given an array of strings words
and another array of query strings queries
. For each query queries[i]
, count the number of words in words
such that f(queries[i])
< f(W)
for each W
in words
.
Return an integer array answer
, where each answer[i]
is the answer to the ith
query.
Example 1:
Input: queries = ["cbd"], words = ["zaaaz"] Output: [1] Explanation: On the first query we have f("cbd") = 1, f("zaaaz") = 3 so f("cbd") < f("zaaaz").
Example 2:
Input: queries = ["bbb","cc"], words = ["a","aa","aaa","aaaa"] Output: [1,2] Explanation: On the first query only f("bbb") < f("aaaa"). On the second query both f("aaa") and f("aaaa") are both > f("cc").
Constraints:
1 <= queries.length <= 2000
1 <= words.length <= 2000
1 <= queries[i].length, words[i].length <= 10
queries[i][j]
,words[i][j]
consist of lowercase English letters.
Solutions
Solution 1: Sorting + Binary Search
First, according to the problem description, we implement a function $f(s)$, which returns the frequency of the smallest letter in the string $s$ in lexicographical order.
Next, we calculate $f(w)$ for each string $w$ in $words$, sort them, and store them in an array $nums$.
Then, we traverse each string $q$ in $queries$, and binary search in $nums$ for the first position $i$ that is greater than $f(q)$. Then, the elements at index $i$ and after in $nums$ all satisfy $f(q) < f(W)$, so the answer to the current query is $n - i$.
The time complexity is $O((n + q) \times M)$, and the space complexity is $O(n)$. Here, $n$ and $q$ are the lengths of the arrays $words$ and $queries$ respectively, and $M$ is the maximum length of the strings.
-
class Solution { public int[] numSmallerByFrequency(String[] queries, String[] words) { int n = words.length; int[] nums = new int[n]; for (int i = 0; i < n; ++i) { nums[i] = f(words[i]); } Arrays.sort(nums); int m = queries.length; int[] ans = new int[m]; for (int i = 0; i < m; ++i) { int x = f(queries[i]); int l = 0, r = n; while (l < r) { int mid = (l + r) >> 1; if (nums[mid] > x) { r = mid; } else { l = mid + 1; } } ans[i] = n - l; } return ans; } private int f(String s) { int[] cnt = new int[26]; for (int i = 0; i < s.length(); ++i) { ++cnt[s.charAt(i) - 'a']; } for (int x : cnt) { if (x > 0) { return x; } } return 0; } }
-
class Solution { public: vector<int> numSmallerByFrequency(vector<string>& queries, vector<string>& words) { auto f = [](string s) { int cnt[26] = {0}; for (char c : s) { cnt[c - 'a']++; } for (int x : cnt) { if (x) { return x; } } return 0; }; int n = words.size(); int nums[n]; for (int i = 0; i < n; i++) { nums[i] = f(words[i]); } sort(nums, nums + n); vector<int> ans; for (auto& q : queries) { int x = f(q); ans.push_back(n - (upper_bound(nums, nums + n, x) - nums)); } return ans; } };
-
class Solution: def numSmallerByFrequency(self, queries: List[str], words: List[str]) -> List[int]: def f(s: str) -> int: cnt = Counter(s) return next(cnt[c] for c in ascii_lowercase if cnt[c]) n = len(words) nums = sorted(f(w) for w in words) return [n - bisect_right(nums, f(q)) for q in queries]
-
func numSmallerByFrequency(queries []string, words []string) (ans []int) { f := func(s string) int { cnt := [26]int{} for _, c := range s { cnt[c-'a']++ } for _, x := range cnt { if x > 0 { return x } } return 0 } n := len(words) nums := make([]int, n) for i, w := range words { nums[i] = f(w) } sort.Ints(nums) for _, q := range queries { x := f(q) ans = append(ans, n-sort.SearchInts(nums, x+1)) } return }
-
function numSmallerByFrequency(queries: string[], words: string[]): number[] { const f = (s: string): number => { const cnt = new Array(26).fill(0); for (const c of s) { cnt[c.charCodeAt(0) - 'a'.charCodeAt(0)]++; } return cnt.find(x => x > 0); }; const nums = words.map(f).sort((a, b) => a - b); const ans: number[] = []; for (const q of queries) { const x = f(q); let l = 0, r = nums.length; while (l < r) { const mid = (l + r) >> 1; if (nums[mid] > x) { r = mid; } else { l = mid + 1; } } ans.push(nums.length - l); } return ans; }