Welcome to Subscribe On Youtube
1151. Minimum Swaps to Group All 1’s Together
Description
Given a binary array data
, return the minimum number of swaps required to group all 1
’s present in the array together in any place in the array.
Example 1:
Input: data = [1,0,1,0,1] Output: 1 Explanation: There are 3 ways to group all 1's together: [1,1,1,0,0] using 1 swap. [0,1,1,1,0] using 2 swaps. [0,0,1,1,1] using 1 swap. The minimum is 1.
Example 2:
Input: data = [0,0,0,1,0] Output: 0 Explanation: Since there is only one 1 in the array, no swaps are needed.
Example 3:
Input: data = [1,0,1,0,1,0,0,1,1,0,1] Output: 3 Explanation: One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].
Constraints:
1 <= data.length <= 105
data[i]
is either0
or1
.
Solutions
Solution 1: Sliding Window
First, we count the number of $1$s in the array, denoted as $k$. Then we use a sliding window of size $k$, moving the right boundary of the window from left to right, and count the number of $1$s in the window, denoted as $t$. Each time we move the window, we update the value of $t$. Finally, when the right boundary of the window moves to the end of the array, the number of $1$s in the window is the maximum, denoted as $mx$. The final answer is $k - mx$.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array.
-
class Solution { public int minSwaps(int[] data) { int k = 0; for (int v : data) { k += v; } int t = 0; for (int i = 0; i < k; ++i) { t += data[i]; } int mx = t; for (int i = k; i < data.length; ++i) { t += data[i]; t -= data[i - k]; mx = Math.max(mx, t); } return k - mx; } }
-
class Solution { public: int minSwaps(vector<int>& data) { int k = 0; for (int& v : data) { k += v; } int t = 0; for (int i = 0; i < k; ++i) { t += data[i]; } int mx = t; for (int i = k; i < data.size(); ++i) { t += data[i]; t -= data[i - k]; mx = max(mx, t); } return k - mx; } };
-
class Solution: def minSwaps(self, data: List[int]) -> int: k = data.count(1) t = sum(data[:k]) mx = t for i in range(k, len(data)): t += data[i] t -= data[i - k] mx = max(mx, t) return k - mx
-
func minSwaps(data []int) int { k := 0 for _, v := range data { k += v } t := 0 for _, v := range data[:k] { t += v } mx := t for i := k; i < len(data); i++ { t += data[i] t -= data[i-k] mx = max(mx, t) } return k - mx }
-
function minSwaps(data: number[]): number { const k = data.reduce((acc, cur) => acc + cur, 0); let t = data.slice(0, k).reduce((acc, cur) => acc + cur, 0); let mx = t; for (let i = k; i < data.length; ++i) { t += data[i] - data[i - k]; mx = Math.max(mx, t); } return k - mx; }
-
public class Solution { public int MinSwaps(int[] data) { int k = data.Count(x => x == 1); int t = data.Take(k).Sum(); int mx = t; for (int i = k; i < data.Length; ++i) { t += data[i]; t -= data[i - k]; mx = Math.Max(mx, t); } return k - mx; } }