Welcome to Subscribe On Youtube

1151. Minimum Swaps to Group All 1’s Together

Description

Given a binary array data, return the minimum number of swaps required to group all 1’s present in the array together in any place in the array.

 

Example 1:

Input: data = [1,0,1,0,1]
Output: 1
Explanation: There are 3 ways to group all 1's together:
[1,1,1,0,0] using 1 swap.
[0,1,1,1,0] using 2 swaps.
[0,0,1,1,1] using 1 swap.
The minimum is 1.

Example 2:

Input: data = [0,0,0,1,0]
Output: 0
Explanation: Since there is only one 1 in the array, no swaps are needed.

Example 3:

Input: data = [1,0,1,0,1,0,0,1,1,0,1]
Output: 3
Explanation: One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].

 

Constraints:

  • 1 <= data.length <= 105
  • data[i] is either 0 or 1.

Solutions

Solution 1: Sliding Window

First, we count the number of $1$s in the array, denoted as $k$. Then we use a sliding window of size $k$, moving the right boundary of the window from left to right, and count the number of $1$s in the window, denoted as $t$. Each time we move the window, we update the value of $t$. Finally, when the right boundary of the window moves to the end of the array, the number of $1$s in the window is the maximum, denoted as $mx$. The final answer is $k - mx$.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array.

  • class Solution {
        public int minSwaps(int[] data) {
            int k = 0;
            for (int v : data) {
                k += v;
            }
            int t = 0;
            for (int i = 0; i < k; ++i) {
                t += data[i];
            }
            int mx = t;
            for (int i = k; i < data.length; ++i) {
                t += data[i];
                t -= data[i - k];
                mx = Math.max(mx, t);
            }
            return k - mx;
        }
    }
    
  • class Solution {
    public:
        int minSwaps(vector<int>& data) {
            int k = 0;
            for (int& v : data) {
                k += v;
            }
            int t = 0;
            for (int i = 0; i < k; ++i) {
                t += data[i];
            }
            int mx = t;
            for (int i = k; i < data.size(); ++i) {
                t += data[i];
                t -= data[i - k];
                mx = max(mx, t);
            }
            return k - mx;
        }
    };
    
  • class Solution:
        def minSwaps(self, data: List[int]) -> int:
            k = data.count(1)
            t = sum(data[:k])
            mx = t
            for i in range(k, len(data)):
                t += data[i]
                t -= data[i - k]
                mx = max(mx, t)
            return k - mx
    
    
  • func minSwaps(data []int) int {
    	k := 0
    	for _, v := range data {
    		k += v
    	}
    	t := 0
    	for _, v := range data[:k] {
    		t += v
    	}
    	mx := t
    	for i := k; i < len(data); i++ {
    		t += data[i]
    		t -= data[i-k]
    		mx = max(mx, t)
    	}
    	return k - mx
    }
    
  • function minSwaps(data: number[]): number {
        const k = data.reduce((acc, cur) => acc + cur, 0);
        let t = data.slice(0, k).reduce((acc, cur) => acc + cur, 0);
        let mx = t;
        for (let i = k; i < data.length; ++i) {
            t += data[i] - data[i - k];
            mx = Math.max(mx, t);
        }
        return k - mx;
    }
    
    
  • public class Solution {
        public int MinSwaps(int[] data) {
            int k = data.Count(x => x == 1);
            int t = data.Take(k).Sum();
            int mx = t;
            for (int i = k; i < data.Length; ++i) {
                t += data[i];
                t -= data[i - k];
                mx = Math.Max(mx, t);
            }
            return k - mx;
        }
    }
    

All Problems

All Solutions