Welcome to Subscribe On Youtube
1106. Parsing A Boolean Expression
Description
A boolean expression is an expression that evaluates to either true
or false
. It can be in one of the following shapes:
't'
that evaluates totrue
.'f'
that evaluates tofalse
.'!(subExpr)'
that evaluates to the logical NOT of the inner expressionsubExpr
.'&(subExpr1, subExpr2, ..., subExprn)'
that evaluates to the logical AND of the inner expressionssubExpr1, subExpr2, ..., subExprn
wheren >= 1
.'|(subExpr1, subExpr2, ..., subExprn)'
that evaluates to the logical OR of the inner expressionssubExpr1, subExpr2, ..., subExprn
wheren >= 1
.
Given a string expression
that represents a boolean expression, return the evaluation of that expression.
It is guaranteed that the given expression is valid and follows the given rules.
Example 1:
Input: expression = "&(|(f))" Output: false Explanation: First, evaluate |(f) --> f. The expression is now "&(f)". Then, evaluate &(f) --> f. The expression is now "f". Finally, return false.
Example 2:
Input: expression = "|(f,f,f,t)" Output: true Explanation: The evaluation of (false OR false OR false OR true) is true.
Example 3:
Input: expression = "!(&(f,t))" Output: true Explanation: First, evaluate &(f,t) --> (false AND true) --> false --> f. The expression is now "!(f)". Then, evaluate !(f) --> NOT false --> true. We return true.
Constraints:
1 <= expression.length <= 2 * 104
- expression[i] is one following characters:
'('
,')'
,'&'
,'|'
,'!'
,'t'
,'f'
, and','
.
Solutions
Solution 1: Stack
For this type of expression parsing problem, we can use a stack to assist.
We traverse the expression expression
from left to right. For each character $c$ we encounter:
- If $c$ is one of
"tf!&|"
, we push it directly onto the stack; - If $c$ is a right parenthesis
')'
, we pop elements from the stack until we encounter an operator'!'
,'&'
, or'|'
. During this process, we use variables $t$ and $f$ to record the number of't'
and'f'
characters popped from the stack. Finally, based on the number of characters popped and the operator, we calculate a new character't'
or'f'
and push it onto the stack.
After traversing the expression expression
, there is only one character left in the stack. If it is 't'
, return true
, otherwise return false
.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the expression expression
.
-
class Solution { public boolean parseBoolExpr(String expression) { Deque<Character> stk = new ArrayDeque<>(); for (char c : expression.toCharArray()) { if (c != '(' && c != ')' && c != ',') { stk.push(c); } else if (c == ')') { int t = 0, f = 0; while (stk.peek() == 't' || stk.peek() == 'f') { t += stk.peek() == 't' ? 1 : 0; f += stk.peek() == 'f' ? 1 : 0; stk.pop(); } char op = stk.pop(); c = 'f'; if ((op == '!' && f > 0) || (op == '&' && f == 0) || (op == '|' && t > 0)) { c = 't'; } stk.push(c); } } return stk.peek() == 't'; } }
-
class Solution { public: bool parseBoolExpr(string expression) { stack<char> stk; for (char c : expression) { if (c != '(' && c != ')' && c != ',') stk.push(c); else if (c == ')') { int t = 0, f = 0; while (stk.top() == 't' || stk.top() == 'f') { t += stk.top() == 't'; f += stk.top() == 'f'; stk.pop(); } char op = stk.top(); stk.pop(); if (op == '!') c = f ? 't' : 'f'; if (op == '&') c = f ? 'f' : 't'; if (op == '|') c = t ? 't' : 'f'; stk.push(c); } } return stk.top() == 't'; } };
-
class Solution: def parseBoolExpr(self, expression: str) -> bool: stk = [] for c in expression: if c in 'tf!&|': stk.append(c) elif c == ')': t = f = 0 while stk[-1] in 'tf': t += stk[-1] == 't' f += stk[-1] == 'f' stk.pop() match stk.pop(): case '!': c = 't' if f else 'f' case '&': c = 'f' if f else 't' case '|': c = 't' if t else 'f' stk.append(c) return stk[0] == 't'
-
func parseBoolExpr(expression string) bool { stk := []rune{} for _, c := range expression { if c != '(' && c != ')' && c != ',' { stk = append(stk, c) } else if c == ')' { var t, f int for stk[len(stk)-1] == 't' || stk[len(stk)-1] == 'f' { if stk[len(stk)-1] == 't' { t++ } else { f++ } stk = stk[:len(stk)-1] } op := stk[len(stk)-1] stk = stk[:len(stk)-1] c = 'f' if (op == '!' && f > 0) || (op == '&' && f == 0) || (op == '|' && t > 0) { c = 't' } stk = append(stk, c) } } return stk[0] == 't' }
-
function parseBoolExpr(expression: string): boolean { const expr = expression; const n = expr.length; let i = 0; const dfs = () => { let res: boolean[] = []; while (i < n) { const c = expr[i++]; if (c === ')') { break; } if (c === '!') { res.push(!dfs()[0]); } else if (c === '|') { res.push(dfs().some(v => v)); } else if (c === '&') { res.push(dfs().every(v => v)); } else if (c === 't') { res.push(true); } else if (c === 'f') { res.push(false); } } return res; }; return dfs()[0]; }
-
impl Solution { fn dfs(i: &mut usize, expr: &[u8]) -> Vec<bool> { let n = expr.len(); let mut res = Vec::new(); while *i < n { let c = expr[*i]; *i += 1; match c { b')' => { break; } b't' => { res.push(true); } b'f' => { res.push(false); } b'!' => { res.push(!Self::dfs(i, expr)[0]); } b'&' => { res.push( Self::dfs(i, expr) .iter() .all(|v| *v) ); } b'|' => { res.push( Self::dfs(i, expr) .iter() .any(|v| *v) ); } _ => {} } } res } pub fn parse_bool_expr(expression: String) -> bool { let expr = expression.as_bytes(); let mut i = 0; Self::dfs(&mut i, expr)[0] } }