Welcome to Subscribe On Youtube

970. Powerful Integers

Description

Given three integers x, y, and bound, return a list of all the powerful integers that have a value less than or equal to bound.

An integer is powerful if it can be represented as xi + yj for some integers i >= 0 and j >= 0.

You may return the answer in any order. In your answer, each value should occur at most once.

 

Example 1:

Input: x = 2, y = 3, bound = 10
Output: [2,3,4,5,7,9,10]
Explanation:
2 = 20 + 30
3 = 21 + 30
4 = 20 + 31
5 = 21 + 31
7 = 22 + 31
9 = 23 + 30
10 = 20 + 32

Example 2:

Input: x = 3, y = 5, bound = 15
Output: [2,4,6,8,10,14]

 

Constraints:

  • 1 <= x, y <= 100
  • 0 <= bound <= 106

Solutions

Solution 1: Hash Table + Enumeration

According to the description of the problem, a powerful integer can be represented as $x^i + y^j$, where $i \geq 0$, $j \geq 0$.

The problem requires us to find all powerful integers that do not exceed $bound$. We notice that the value range of $bound$ does not exceed $10^6$, and $2^{20} = 1048576 \gt 10^6$. Therefore, if $x \geq 2$, then $i$ is at most $20$ to make $x^i + y^j \leq bound$ hold. Similarly, if $y \geq 2$, then $j$ is at most $20$.

Therefore, we can use double loop to enumerate all possible $x^i$ and $y^j$, denoted as $a$ and $b$ respectively, and ensure that $a + b \leq bound$, then $a + b$ is a powerful integer. We use a hash table to store all powerful integers that meet the conditions, and finally convert all elements in the hash table into the answer list and return it.

Note that if $x=1$ or $y=1$, then the value of $a$ or $b$ is always equal to $1$, and the corresponding loop only needs to be executed once to exit.

The time complexity is $O(\log^2 bound)$, and the space complexity is $O(\log^2 bound)$.

  • class Solution {
        public List<Integer> powerfulIntegers(int x, int y, int bound) {
            Set<Integer> ans = new HashSet<>();
            for (int a = 1; a <= bound; a *= x) {
                for (int b = 1; a + b <= bound; b *= y) {
                    ans.add(a + b);
                    if (y == 1) {
                        break;
                    }
                }
                if (x == 1) {
                    break;
                }
            }
            return new ArrayList<>(ans);
        }
    }
    
  • class Solution {
    public:
        vector<int> powerfulIntegers(int x, int y, int bound) {
            unordered_set<int> ans;
            for (int a = 1; a <= bound; a *= x) {
                for (int b = 1; a + b <= bound; b *= y) {
                    ans.insert(a + b);
                    if (y == 1) {
                        break;
                    }
                }
                if (x == 1) {
                    break;
                }
            }
            return vector<int>(ans.begin(), ans.end());
        }
    };
    
  • class Solution:
        def powerfulIntegers(self, x: int, y: int, bound: int) -> List[int]:
            ans = set()
            a = 1
            while a <= bound:
                b = 1
                while a + b <= bound:
                    ans.add(a + b)
                    b *= y
                    if y == 1:
                        break
                if x == 1:
                    break
                a *= x
            return list(ans)
    
    
  • func powerfulIntegers(x int, y int, bound int) (ans []int) {
    	s := map[int]struct{}{}
    	for a := 1; a <= bound; a *= x {
    		for b := 1; a+b <= bound; b *= y {
    			s[a+b] = struct{}{}
    			if y == 1 {
    				break
    			}
    		}
    		if x == 1 {
    			break
    		}
    	}
    	for x := range s {
    		ans = append(ans, x)
    	}
    	return ans
    }
    
  • function powerfulIntegers(x: number, y: number, bound: number): number[] {
        const ans = new Set<number>();
        for (let a = 1; a <= bound; a *= x) {
            for (let b = 1; a + b <= bound; b *= y) {
                ans.add(a + b);
                if (y === 1) {
                    break;
                }
            }
            if (x === 1) {
                break;
            }
        }
        return Array.from(ans);
    }
    
    
  • /**
     * @param {number} x
     * @param {number} y
     * @param {number} bound
     * @return {number[]}
     */
    var powerfulIntegers = function (x, y, bound) {
        const ans = new Set();
        for (let a = 1; a <= bound; a *= x) {
            for (let b = 1; a + b <= bound; b *= y) {
                ans.add(a + b);
                if (y === 1) {
                    break;
                }
            }
            if (x === 1) {
                break;
            }
        }
        return [...ans];
    };
    
    

All Problems

All Solutions