Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/968.html

968. Binary Tree Cameras (Hard)

Given a binary tree, we install cameras on the nodes of the tree. 

Each camera at a node can monitor its parent, itself, and its immediate children.

Calculate the minimum number of cameras needed to monitor all nodes of the tree.

 

Example 1:

Input: [0,0,null,0,0]
Output: 1
Explanation: One camera is enough to monitor all nodes if placed as shown.

Example 2:

Input: [0,0,null,0,null,0,null,null,0]
Output: 2
Explanation: At least two cameras are needed to monitor all nodes of the tree. The above image shows one of the valid configurations of camera placement.


Note:

  1. The number of nodes in the given tree will be in the range [1, 1000].
  2. Every node has value 0.

Companies:
Facebook

Related Topics:
Dynamic Programming, Tree, Depth-first Search

Solution 1.

Assumption: we can alter the value of the tree node.

Use postorder traversal. Let val convey the state of the node:

  • 0 means uncovered.
  • 1 means covered
  • 2 means having camera

If node is NULL, we regard it as 1.

  • If either of my left/right child is uncovered, I have to put a camera.
  • Otherwise, if either of my left/right child has camera, I’m covered and skip me.
  • Otherwise (both children are covered), if I’m root, I have to put a camera.
  • Otherwise, skip me.
// OJ: https://leetcode.com/problems/binary-tree-cameras/
// Time: O(N)
// Space: O(logN)
class Solution {
private:
    TreeNode *R;
    int postorder(TreeNode* root) {
        if (!root) return 0;
        int ans = postorder(root->left) + postorder(root->right);
        int left = root->left ? root->left->val : 1;
        int right = root->right ? root->right->val : 1;
        if (left == 0 || right == 0) {
            root->val = 2;
            return ans + 1;
        } else if (left == 2 || right == 2) {
            root->val = 1;
            return ans;
        } else return root == R ? ans + 1 : ans;
    }
public:
    int minCameraCover(TreeNode* root) {
        R = root;
        return postorder(root);
    }
};

Solution 2.

If we can’t have the assumption in Solution 1, we can use the return value to return my state to my parent.

// OJ: https://leetcode.com/problems/binary-tree-cameras/
// Time: O(N)
// Space: O(logN)
class Solution {
private:
    int ans = 0;
    int postorder(TreeNode *root) {
        if (!root) return 1;
        int left = postorder(root->left);
        int right = postorder(root->right);
        if (left == 0 || right == 0) {
            ++ans;
            return 2;
        } else return left == 2 || right == 2 ? 1 : 0;
    }
public:
    int minCameraCover(TreeNode* root) {
        return postorder(root) == 0 ? ans + 1 : ans;
    }
};
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public int minCameraCover(TreeNode root) {
            if (root == null)
                return 0;
            List<TreeNode> list = new ArrayList<TreeNode>();
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                TreeNode node = queue.poll();
                list.add(node);
                TreeNode left = node.left, right = node.right;
                if (left != null)
                    queue.offer(left);
                if (right != null)
                    queue.offer(right);
            }
            Map<TreeNode, int[]> map = new HashMap<TreeNode, int[]>();
            for (int i = list.size() - 1; i >= 0; i--) {
                TreeNode node = list.get(i);
                if (node.left == null && node.right == null)
                    map.put(node, new int[]{0, Integer.MAX_VALUE / 10, 1});
                else if (node.left == null) {
                    int[] rightArray = map.get(node.right);
                    int[] array = new int[3];
                    array[0] = rightArray[1];
                    array[1] = rightArray[2];
                    array[2] = 1 + Math.min(rightArray[0], Math.min(rightArray[1], rightArray[2]));
                    map.put(node, array);
                } else if (node.right == null) {
                    int[] leftArray = map.get(node.left);
                    int[] array = new int[3];
                    array[0] = leftArray[1];
                    array[1] = leftArray[2];
                    array[2] = 1 + Math.min(leftArray[0], Math.min(leftArray[1], leftArray[2]));
                    map.put(node, array);
                } else {
                    int[] leftArray = map.get(node.left);
                    int[] rightArray = map.get(node.right);
                    int minLeft = Math.min(leftArray[1], leftArray[2]);
                    int minRight = Math.min(rightArray[1], rightArray[2]);
                    int[] array = new int[3];
                    array[0] = leftArray[1] + rightArray[1];
                    array[1] = Math.min(leftArray[2] + minRight, rightArray[2] + minLeft);
                    array[2] = 1 + Math.min(leftArray[0], minLeft) + Math.min(rightArray[0], minRight);
                    map.put(node, array);
                }
            }
            int[] rootArray = map.get(root);
            return Math.min(rootArray[1], rootArray[2]);
        }
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private int ans;
    
        public int minCameraCover(TreeNode root) {
            ans = 0;
            return (dfs(root) == 0) ? ans + 1 : ans;
        }
    
        private int dfs(TreeNode root) {
            if (root == null) {
                return 2;
            }
            int left = dfs(root.left);
            int right = dfs(root.right);
            if (left == 0 || right == 0) {
                ++ans;
                return 1;
            }
            if (left == 1 || right == 1) {
                return 2;
            }
            return 0;
        }
    }
    
  • // OJ: https://leetcode.com/problems/binary-tree-cameras/
    // Time: O(N)
    // Space: O(logN)
    class Solution {
    private:
        TreeNode *R;
        int postorder(TreeNode* root) {
            if (!root) return 0;
            int ans = postorder(root->left) + postorder(root->right);
            int left = root->left ? root->left->val : 1;
            int right = root->right ? root->right->val : 1;
            if (left == 0 || right == 0) {
                root->val = 2;
                return ans + 1;
            } else if (left == 2 || right == 2) {
                root->val = 1;
                return ans;
            } else return root == R ? ans + 1 : ans;
        }
    public:
        int minCameraCover(TreeNode* root) {
            R = root;
            return postorder(root);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def minCameraCover(self, root: TreeNode) -> int:
            def dfs(root):
                nonlocal ans
                if root is None:
                    return 2
                left, right = dfs(root.left), dfs(root.right)
                if left == 0 or right == 0:
                    ans += 1
                    return 1
                return 2 if left == 1 or right == 1 else 0
    
            ans = 0
            return (dfs(root) == 0) + ans
    
    ############
    
    # 968. Binary Tree Cameras
    # https://leetcode.com/problems/binary-tree-cameras/
    
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def minCameraCover(self, root: Optional[TreeNode]) -> int:
            res = 0
            
            def go(node):
                nonlocal res
                
                if not node: return 2
                
                left, right = go(node.left), go(node.right)
                
                if left == 0 or right == 0:
                    res += 1
                    return 1
                
                return 2 if left == 1 or right == 1 else 0
            
            return (go(root) == 0) + res
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func minCameraCover(root *TreeNode) int {
    	ans := 0
    	var dfs func(root *TreeNode) int
    	dfs = func(root *TreeNode) int {
    		if root == nil {
    			return 2
    		}
    		left, right := dfs(root.Left), dfs(root.Right)
    		if left == 0 || right == 0 {
    			ans++
    			return 1
    		}
    		if left == 1 || right == 1 {
    			return 2
    		}
    		return 0
    	}
    	if dfs(root) == 0 {
    		return ans + 1
    	}
    	return ans
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function minCameraCover(root: TreeNode | null): number {
        const dfs = (root: TreeNode | null): number[] => {
            if (!root) {
                return [1 << 29, 0, 0];
            }
            const [la, lb, lc] = dfs(root.left);
            const [ra, rb, rc] = dfs(root.right);
            const a = 1 + Math.min(la, lb, lc) + Math.min(ra, rb, rc);
            const b = Math.min(la + ra, la + rb, lb + ra);
            const c = lb + rb;
            return [a, b, c];
        };
        const [a, b, _] = dfs(root);
        return Math.min(a, b);
    }
    
    

All Problems

All Solutions