Welcome to Subscribe On Youtube

886. Possible Bipartition

Description

We want to split a group of n people (labeled from 1 to n) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.

Given the integer n and the array dislikes where dislikes[i] = [ai, bi] indicates that the person labeled ai does not like the person labeled bi, return true if it is possible to split everyone into two groups in this way.

 

Example 1:

Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: The first group has [1,4], and the second group has [2,3].

Example 2:

Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Explanation: We need at least 3 groups to divide them. We cannot put them in two groups.

 

Constraints:

  • 1 <= n <= 2000
  • 0 <= dislikes.length <= 104
  • dislikes[i].length == 2
  • 1 <= ai < bi <= n
  • All the pairs of dislikes are unique.

Solutions

Union find.

  • class Solution {
        private int[] p;
    
        public boolean possibleBipartition(int n, int[][] dislikes) {
            p = new int[n];
            List<Integer>[] g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (int i = 0; i < n; ++i) {
                p[i] = i;
            }
            for (var e : dislikes) {
                int a = e[0] - 1, b = e[1] - 1;
                g[a].add(b);
                g[b].add(a);
            }
            for (int i = 0; i < n; ++i) {
                for (int j : g[i]) {
                    if (find(i) == find(j)) {
                        return false;
                    }
                    p[find(j)] = find(g[i].get(0));
                }
            }
            return true;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
  • class Solution {
    public:
        bool possibleBipartition(int n, vector<vector<int>>& dislikes) {
            vector<int> p(n);
            iota(p.begin(), p.end(), 0);
            unordered_map<int, vector<int>> g;
            for (auto& e : dislikes) {
                int a = e[0] - 1, b = e[1] - 1;
                g[a].push_back(b);
                g[b].push_back(a);
            }
            function<int(int)> find = [&](int x) -> int {
                if (p[x] != x) p[x] = find(p[x]);
                return p[x];
            };
            for (int i = 0; i < n; ++i) {
                for (int j : g[i]) {
                    if (find(i) == find(j)) return false;
                    p[find(j)] = find(g[i][0]);
                }
            }
            return true;
        }
    };
    
  • class Solution:
        def possibleBipartition(self, n: int, dislikes: List[List[int]]) -> bool:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            g = defaultdict(list)
            for a, b in dislikes:
                a, b = a - 1, b - 1
                g[a].append(b)
                g[b].append(a)
            p = list(range(n))
            for i in range(n):
                for j in g[i]:
                    if find(i) == find(j):
                        return False
                    p[find(j)] = find(g[i][0])
            return True
    
    
  • func possibleBipartition(n int, dislikes [][]int) bool {
    	p := make([]int, n)
    	g := make([][]int, n)
    	for i := range p {
    		p[i] = i
    	}
    	for _, e := range dislikes {
    		a, b := e[0]-1, e[1]-1
    		g[a] = append(g[a], b)
    		g[b] = append(g[b], a)
    	}
    	var find func(int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	for i := 0; i < n; i++ {
    		for _, j := range g[i] {
    			if find(i) == find(j) {
    				return false
    			}
    			p[find(j)] = find(g[i][0])
    		}
    	}
    	return true
    }
    
  • function possibleBipartition(n: number, dislikes: number[][]): boolean {
        const color = new Array(n + 1).fill(0);
        const g = Array.from({ length: n + 1 }, () => []);
        const dfs = (i: number, v: number) => {
            color[i] = v;
            for (const j of g[i]) {
                if (color[j] === color[i] || (color[j] === 0 && dfs(j, 3 ^ v))) {
                    return true;
                }
            }
            return false;
        };
        for (const [a, b] of dislikes) {
            g[a].push(b);
            g[b].push(a);
        }
        for (let i = 1; i <= n; i++) {
            if (color[i] === 0 && dfs(i, 1)) {
                return false;
            }
        }
        return true;
    }
    
    
  • impl Solution {
        fn dfs(i: usize, v: usize, color: &mut Vec<usize>, g: &Vec<Vec<usize>>) -> bool {
            color[i] = v;
            for &j in (*g[i]).iter() {
                if color[j] == color[i] || (color[j] == 0 && Self::dfs(j, v ^ 3, color, g)) {
                    return true;
                }
            }
            false
        }
    
        pub fn possible_bipartition(n: i32, dislikes: Vec<Vec<i32>>) -> bool {
            let n = n as usize;
            let mut color = vec![0; n + 1];
            let mut g = vec![Vec::new(); n + 1];
            for d in dislikes.iter() {
                let (i, j) = (d[0] as usize, d[1] as usize);
                g[i].push(j);
                g[j].push(i);
            }
            for i in 1..=n {
                if color[i] == 0 && Self::dfs(i, 1, &mut color, &g) {
                    return false;
                }
            }
            true
        }
    }
    
    

All Problems

All Solutions