##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/887.html

# 887. Super Egg Drop (Hard)

You are given K eggs, and you have access to a building with N floors from 1 to N

Each egg is identical in function, and if an egg breaks, you cannot drop it again.

You know that there exists a floor F with 0 <= F <= N such that any egg dropped at a floor higher than F will break, and any egg dropped at or below floor F will not break.

Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X (with 1 <= X <= N).

Your goal is to know with certainty what the value of F is.

What is the minimum number of moves that you need to know with certainty what F is, regardless of the initial value of F?

Example 1:

Input: K = 1, N = 2
Output: 2
Explanation:
Drop the egg from floor 1. If it breaks, we know with certainty that F = 0. Otherwise, drop the egg from floor 2. If it breaks, we know with certainty that F = 1. If it didn’t break, then we know with certainty F = 2. Hence, we needed 2 moves in the worst case to know what F is with certainty.

Example 2:

Input: K = 2, N = 6
Output: 3

Example 3:

Input: K = 3, N = 14
Output: 4

Note:

1. 1 <= K <= 100
2. 1 <= N <= 10000

## TLE Solution

Assume we choose to throw the egg at floor i:

• If the egg breaks, we continue throwing between floors [1, i - 1], with one less egg available
• If the egg doesn’t break, we continue throwing between floors [i + 1, N], with the same number of eggs. In this way, for whichever floors region [m, n] (1 <= m <= n <= N), we can regard floor m - 1 is safe while floor n + 1 is not safe. So the 2nd case above is analogous to throwing between floors [1, N - i].

Denote f(K, N) as the result. The 1st case corresponds to f(K - 1, i - 1), and the 2nd case f(K, N - i). We have to pick the max of them to ensure certainty. Denote g(K, N, i) as this max.

Thus, f(K, N) = 1 + min{ g(K, N, i) | 1 <= i <= N }. This is the equation of DP.

In the worse case we need to visit all the combinations of k and n (k in [1, K], n in [1, N]), thus time complexity is O(KN).

// OJ: https://leetcode.com/problems/super-egg-drop/
// Time: O(KN)
// Space: O(KN)
struct pair_hash {
template <class T1, class T2>
std::size_t operator () (const std::pair<T1,T2> &p) const {
return std::hash<T1>{}(p.first * 10000 + p.second);
}
};
class Solution {
private:
unordered_map<pair<int, int>, int, pair_hash> m;
public:
int superEggDrop(int K, int N) {
if (!K || !N) return 0;
if (K == 1) return N;
auto p = make_pair(K, N);
if (m.find(p) != m.end()) return m[p];
int val = INT_MAX;
int prev = INT_MAX;
for (int i = (N + 1) / 2; i >= 1; --i) {
int v = max(superEggDrop(K - 1, i - 1), superEggDrop(K, N - i));
if (v > prev) break;
prev = val;
val = min(val, v);

}
return m[p] = 1 + val;
}
};


## Solution 1.

Denote f(K, S) as the max number of floors that is solvable given K eggs and S steps.

After I throw an egg:

• If the egg is broken, I should continue throw the eggs within lower floors. The max number of lower floors I can handle is f(K - 1, S - 1).
• If the egg is not broken, I should continue throw the eggs within upper floors. The max number of upper floors I can handle is f(K, S - 1).

So the max total number of floors I can handle is 1 plus the result of the above two cases, i.e. f(K, S) = 1 + f(K - 1, S - 1) + f(K, S - 1).

// OJ: https://leetcode.com/problems/super-egg-drop/
// Time: O(SK) where S is the result.
// Space: O(K)
// Ref: https://leetcode.com/problems/super-egg-drop/discuss/159508/easy-to-understand
class Solution {
public:
int superEggDrop(int K, int N) {
int step = 0;
vector<int> dp(K + 1);
for (; dp[K] < N; ++step) {
for (int k = K; k > 0; --k) {
dp[k] += 1 + dp[k - 1];
}
}
return step;
}
};

• class Solution {
public int superEggDrop(int K, int N) {
int[][] dp = new int[N + 1][K + 1];
for (int i = 0; i <= N; i++) {
for (int j = 0; j <= K; j++)
dp[i][j] = i;
}
dp[1][0] = 0;
for (int i = 1; i <= K; i++)
dp[1][i] = 1;
for (int i = 0; i <= N; i++) {
dp[i][0] = 0;
dp[i][1] = i;
}
for (int i = 2; i <= N; i++) {
for (int j = 2; j <= K; j++) {
int low = 1, high = i;
while (low < high) {
int mid = (high - low + 1) / 2 + low;
int remain1 = dp[mid - 1][j - 1];
int remain2 = dp[i - mid][j];
if (remain1 > remain2)
high = mid - 1;
else
low = mid;
}
dp[i][j] = Math.max(dp[low - 1][j - 1], dp[i - low][j]) + 1;
}
}
return dp[N][K];
}
}

############

class Solution {
public int superEggDrop(int K, int N) {
int[] res = new int[K];
Arrays.fill(res, 1);
while (res[K - 1] < N) {
for (int i = K - 1; i >= 1; i--) {
res[i] = res[i] + res[i - 1] + 1;
}
res[0]++;
}
return res[0];
}
}

• // OJ: https://leetcode.com/problems/super-egg-drop/
// Time: O(KN)
// Space: O(KN)
struct pair_hash {
template <class T1, class T2>
std::size_t operator () (const std::pair<T1,T2> &p) const {
return std::hash<T1>{}(p.first * 10000 + p.second);
}
};
class Solution {
private:
unordered_map<pair<int, int>, int, pair_hash> m;
public:
int superEggDrop(int K, int N) {
if (!K || !N) return 0;
if (K == 1) return N;
auto p = make_pair(K, N);
if (m.find(p) != m.end()) return m[p];
int val = INT_MAX;
int prev = INT_MAX;
for (int i = (N + 1) / 2; i >= 1; --i) {
int v = max(superEggDrop(K - 1, i - 1), superEggDrop(K, N - i));
if (v > prev) break;
prev = val;
val = min(val, v);

}
return m[p] = 1 + val;
}
};

• class Solution:
def superEggDrop(self, K: int, N: int) -> int:
dp = [1] * (K)
while dp[K - 1] < N:
for i in range(K - 1, 0, -1):
dp[i] = dp[i] + dp[i - 1] + 1
dp[0] = dp[0] + 1
return dp[0]

############

class Solution:
def superEggDrop(self, K, N):
"""
:type K: int
:type N: int
:rtype: int
"""
h, m = N, K
if h < 1 and m < 1: return 0

t = math.floor( math.log2( h ) ) + 1

if m >= t: return t
else:
g = [ 1 for i in range(m + 1) ]
g[0] = 0

if g[m] >= h: return 1
elif h == 1: return h
else:
for i in range(2, h + 1):
for j in range( m, 1, -1):
g[j] = g[j - 1] + g[j] + 1
if j == m and g[j] >= h:
return i
g[1] = i
if m == 1 and g[1] >= h:
return i


• func superEggDrop(k int, n int) int {
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k+1)
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i < 1 {
return 0
}
if j == 1 {
return i
}
if f[i][j] != 0 {
return f[i][j]
}
l, r := 1, i
for l < r {
mid := (l + r + 1) >> 1
a, b := dfs(mid-1, j-1), dfs(i-mid, j)
if a <= b {
l = mid
} else {
r = mid - 1
}
}
f[i][j] = max(dfs(l-1, j-1), dfs(i-l, j)) + 1
return f[i][j]
}
return dfs(n, k)
}

func max(a, b int) int {
if a > b {
return a
}
return b
}

• function superEggDrop(k: number, n: number): number {
const f: number[][] = new Array(n + 1)
.fill(0)
.map(() => new Array(k + 1).fill(0));
const dfs = (i: number, j: number): number => {
if (i < 1) {
return 0;
}
if (j === 1) {
return i;
}
if (f[i][j]) {
return f[i][j];
}
let l = 1;
let r = i;
while (l < r) {
const mid = (l + r + 1) >> 1;
const a = dfs(mid - 1, j - 1);
const b = dfs(i - mid, j);
if (a <= b) {
l = mid;
} else {
r = mid - 1;
}
}
return (f[i][j] = Math.max(dfs(l - 1, j - 1), dfs(i - l, j)) + 1);
};
return dfs(n, k);
}