##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/837.html

# 837. New 21 Game (Medium)

Alice plays the following game, loosely based on the card game "21".

Alice starts with 0 points, and draws numbers while she has less than K points.  During each draw, she gains an integer number of points randomly from the range [1, W], where W is an integer.  Each draw is independent and the outcomes have equal probabilities.

Alice stops drawing numbers when she gets K or more points.  What is the probability that she has N or less points?

Example 1:

Input: N = 10, K = 1, W = 10
Output: 1.00000
Explanation:  Alice gets a single card, then stops.


Example 2:

Input: N = 6, K = 1, W = 10
Output: 0.60000
Explanation:  Alice gets a single card, then stops.
In 6 out of W = 10 possibilities, she is at or below N = 6 points.


Example 3:

Input: N = 21, K = 17, W = 10
Output: 0.73278

Note:

1. 0 <= K <= N <= 10000
2. 1 <= W <= 10000
3. Answers will be accepted as correct if they are within 10^-5 of the correct answer.
4. The judging time limit has been reduced for this question.

Related Topics:
Dynamic Programming

## Solution 1. Brute Force (TLE)

Let dp[i] be the possibility to land on node i.

For each node i in [0, K), try jump j steps to node i + j where j is in [1, W]. When landing on node i + j from node i, p[i + j] should increase by dp[i] / W.

// OJ: https://leetcode.com/problems/new-21-game/
// Time: O(KW)
// Space: O(1)
// NOTE: This solution will get TLE
class Solution {
public:
double new21Game(int N, int K, int W) {
if (N >= K + W - 1) return 1;
vector<double> dp(K + W);
dp[0] = 1;
for (int i = 0; i < K; ++i) {
for (int j = 1; j <= W && i + j <= N; ++j) dp[i + j] += dp[i] / W;
}
return accumulate(begin(dp) + K, begin(dp) + N + 1, 0.0);
}
};


## Solution 2. DP

Let dp[i] be the probability of getting i points.

Assume K = 5, W = 3.

dp[1] = 1/W
dp[2] = 1/W + dp[1]/W
dp[3] = 1/W + dp[1]/W + dp[2]/W

dp[4] = dp[1]/W + dp[2]/W + dp[3]/W
dp[5] = dp[2]/W + dp[3]/W + dp[4]/W

dp[6] = dp[3]/W + dp[4]/W
dp[7] = dp[4]/W

dp[0] = 1
dp[1] =         dp[0]/W
dp[2] = dp[1] + dp[1]/W
dp[3] = dp[2] + dp[2]/W

dp[4] = dp[3] + dp[3]/W - dp[0]/W
dp[5] = dp[4] + dp[4]/W - dp[1]/W

dp[6] = dp[5]           - dp[2]/W
dp[7] = dp[6]           - dp[3]/W


So we have the formula:

dp[0] = 1
dp[i] = (i > 1 ? dp[i-1] : 0)
+ (i <= K ? dp[i-1]/W : 0)
- (i-W-1 >= 0 ? dp[i-W-1]/W : 0)


The answer is sum( dp[i] | K <= i <= N ).

// OJ: https://leetcode.com/problems/new-21-game/
// Time: O(min(N, K + W))
// Space: O(min(N, K + W))
class Solution {
public:
double new21Game(int N, int K, int W) {
if (!K || N >= K + W - 1) return 1;
vector<double> dp(N + 1);
dp[0] = 1;
double ans = 0;
for (int i = 1; i <= N; ++i) {
if (i > 1) dp[i] += dp[i - 1];
if (i <= K) dp[i] += dp[i - 1] / W;
if (i > W) dp[i] -= dp[i - W - 1]/W;
if (i >= K) ans += dp[i];
}
return ans;
}
};


## Solution 3. DP

// OJ: https://leetcode.com/problems/new-21-game/
// Time: O(K + W)
// Space: O(K + W)
class Solution {
public:
double new21Game(int N, int K, int W) {
if (!K || N >= K + W - 1) return 1;
vector<double> dp(K + W);
for (int i = K; i < K + W && i <= N; ++i) dp[i] = 1;
double sum = min(N - K + 1, W);
for (int i = K - 1; i >= 0; --i) {
dp[i] = sum / W;
sum += dp[i] - dp[i + W];
}
return dp[0];
}
}

• class Solution {
public double new21Game(int N, int K, int W) {
double[] dp = new double[N + W + 1];
for (int i = K; i <= N; i++)
dp[i] = 1.0;
double sum = Math.min(N - K + 1, W);
for (int i = K - 1; i >= 0; i--) {
dp[i] = sum / W;
sum -= dp[i + W] - dp[i];
}
return dp[0];
}
}

• // OJ: https://leetcode.com/problems/new-21-game/
// Time: O(KW)
// Space: O(1)
// NOTE: This solution will get TLE
class Solution {
public:
double new21Game(int N, int K, int W) {
if (N >= K + W - 1) return 1;
vector<double> dp(K + W);
dp[0] = 1;
for (int i = 0; i < K; ++i) {
for (int j = 1; j <= W && i + j <= N; ++j) dp[i + j] += dp[i] / W;
}
return accumulate(begin(dp) + K, begin(dp) + N + 1, 0.0);
}
};

• class Solution(object):
def new21Game(self, N, K, W):
"""
:type N: int
:type K: int
:type W: int
:rtype: float
"""
if K == 0: return 1
dp = [1.0] + [0] * N
tSum = 1.0
for i in range(1, N + 1):
dp[i] = tSum / W
if i < K:
tSum += dp[i]
if 0 <= i - W < K:
tSum -= dp[i - W]
return sum(dp[K:])

• function new21Game(n: number, k: number, maxPts: number): number {
if (!k) return 1.0;
let dp = new Array(k + maxPts).fill(0.0);
for (let i = k; i <= n && i < k + maxPts; i++) {
dp[i] = 1.0;
}
dp[k - 1] = (1.0 * Math.min(n - k + 1, maxPts)) / maxPts;
for (let i = k - 2; i >= 0; i--) {
dp[i] = dp[i + 1] - (dp[i + maxPts + 1] - dp[i + 1]) / maxPts;
}
return dp[0];
}


• func new21Game(n int, k int, maxPts int) float64 {
f := make([]float64, k)
var dfs func(int) float64
dfs = func(i int) float64 {
if i >= k {
if i <= n {
return 1
}
return 0
}
if i == k-1 {
return float64(min(n-k+1, maxPts)) / float64(maxPts)
}
if f[i] > 0 {
return f[i]
}
f[i] = dfs(i+1) + (dfs(i+1)-dfs(i+maxPts+1))/float64(maxPts)
return f[i]
}
return dfs(0)
}

func min(a, b int) int {
if a < b {
return a
}
return b
}