Welcome to Subscribe On Youtube

837. New 21 Game

Description

Alice plays the following game, loosely based on the card game "21".

Alice starts with 0 points and draws numbers while she has less than k points. During each draw, she gains an integer number of points randomly from the range [1, maxPts], where maxPts is an integer. Each draw is independent and the outcomes have equal probabilities.

Alice stops drawing numbers when she gets k or more points.

Return the probability that Alice has n or fewer points.

Answers within 10-5 of the actual answer are considered accepted.

 

Example 1:

Input: n = 10, k = 1, maxPts = 10
Output: 1.00000
Explanation: Alice gets a single card, then stops.

Example 2:

Input: n = 6, k = 1, maxPts = 10
Output: 0.60000
Explanation: Alice gets a single card, then stops.
In 6 out of 10 possibilities, she is at or below 6 points.

Example 3:

Input: n = 21, k = 17, maxPts = 10
Output: 0.73278

 

Constraints:

  • 0 <= k <= n <= 104
  • 1 <= maxPts <= 104

Solutions

  • class Solution {
        private double[] f;
        private int n, k, maxPts;
    
        public double new21Game(int n, int k, int maxPts) {
            f = new double[k];
            this.n = n;
            this.k = k;
            this.maxPts = maxPts;
            return dfs(0);
        }
    
        private double dfs(int i) {
            if (i >= k) {
                return i <= n ? 1 : 0;
            }
            if (i == k - 1) {
                return Math.min(n - k + 1, maxPts) * 1.0 / maxPts;
            }
            if (f[i] != 0) {
                return f[i];
            }
            return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
        }
    }
    
  • class Solution {
    public:
        double new21Game(int n, int k, int maxPts) {
            vector<double> f(k);
            function<double(int)> dfs = [&](int i) -> double {
                if (i >= k) {
                    return i <= n ? 1 : 0;
                }
                if (i == k - 1) {
                    return min(n - k + 1, maxPts) * 1.0 / maxPts;
                }
                if (f[i]) {
                    return f[i];
                }
                return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
            };
            return dfs(0);
        }
    };
    
  • class Solution:
        def new21Game(self, n: int, k: int, maxPts: int) -> float:
            @cache
            def dfs(i: int) -> float:
                if i >= k:
                    return int(i <= n)
                if i == k - 1:
                    return min(n - k + 1, maxPts) / maxPts
                return dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts
    
            return dfs(0)
    
    
  • func new21Game(n int, k int, maxPts int) float64 {
    	f := make([]float64, k)
    	var dfs func(int) float64
    	dfs = func(i int) float64 {
    		if i >= k {
    			if i <= n {
    				return 1
    			}
    			return 0
    		}
    		if i == k-1 {
    			return float64(min(n-k+1, maxPts)) / float64(maxPts)
    		}
    		if f[i] > 0 {
    			return f[i]
    		}
    		f[i] = dfs(i+1) + (dfs(i+1)-dfs(i+maxPts+1))/float64(maxPts)
    		return f[i]
    	}
    	return dfs(0)
    }
    
  • function new21Game(n: number, k: number, maxPts: number): number {
        const f = new Array(k).fill(0);
        const dfs = (i: number): number => {
            if (i >= k) {
                return i <= n ? 1 : 0;
            }
            if (i === k - 1) {
                return Math.min(n - k + 1, maxPts) / maxPts;
            }
            if (f[i] !== 0) {
                return f[i];
            }
            return (f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts);
        };
        return dfs(0);
    }
    
    

All Problems

All Solutions