Welcome to Subscribe On Youtube
813. Largest Sum of Averages
Description
You are given an integer array nums
and an integer k
. You can partition the array into at most k
non-empty adjacent subarrays. The score of a partition is the sum of the averages of each subarray.
Note that the partition must use every integer in nums
, and that the score is not necessarily an integer.
Return the maximum score you can achieve of all the possible partitions. Answers within 10-6
of the actual answer will be accepted.
Example 1:
Input: nums = [9,1,2,3,9], k = 3 Output: 20.00000 Explanation: The best choice is to partition nums into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20. We could have also partitioned nums into [9, 1], [2], [3, 9], for example. That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.
Example 2:
Input: nums = [1,2,3,4,5,6,7], k = 4 Output: 20.50000
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 104
1 <= k <= nums.length
Solutions
-
class Solution { private Double[][] f; private int[] s; private int n; public double largestSumOfAverages(int[] nums, int k) { n = nums.length; s = new int[n + 1]; f = new Double[n + 1][k + 1]; for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } return dfs(0, k); } private double dfs(int i, int k) { if (i == n) { return 0; } if (k == 1) { return (s[n] - s[i]) * 1.0 / (n - i); } if (f[i][k] != null) { return f[i][k]; } double ans = 0; for (int j = i; j < n; ++j) { double t = (s[j + 1] - s[i]) * 1.0 / (j - i + 1) + dfs(j + 1, k - 1); ans = Math.max(ans, t); } return f[i][k] = ans; } }
-
class Solution { public: double largestSumOfAverages(vector<int>& nums, int k) { int n = nums.size(); int s[n + 1]; double f[n][k + 1]; s[0] = 0; memset(f, 0, sizeof f); for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i]; function<double(int, int)> dfs = [&](int i, int k) -> double { if (i == n) return 0; if (k == 1) return (s[n] - s[i]) * 1.0 / (n - i); if (f[i][k]) return f[i][k]; double ans = 0; for (int j = i; j < n; ++j) { double t = (s[j + 1] - s[i]) * 1.0 / (j - i + 1) + dfs(j + 1, k - 1); ans = max(ans, t); } return f[i][k] = ans; }; return dfs(0, k); } };
-
class Solution: def largestSumOfAverages(self, nums: List[int], k: int) -> float: @cache def dfs(i, k): if i == n: return 0 if k == 1: return (s[-1] - s[i]) / (n - i) ans = 0 for j in range(i, n): t = (s[j + 1] - s[i]) / (j - i + 1) + dfs(j + 1, k - 1) ans = max(ans, t) return ans n = len(nums) s = list(accumulate(nums, initial=0)) return dfs(0, k)
-
func largestSumOfAverages(nums []int, k int) float64 { n := len(nums) s := make([]int, n+1) f := [110][110]float64{} for i, v := range nums { s[i+1] = s[i] + v } var dfs func(i, k int) float64 dfs = func(i, k int) float64 { if i == n { return 0 } if k == 1 { return float64(s[n]-s[i]) / float64(n-i) } if f[i][k] > 0 { return f[i][k] } var ans float64 for j := i; j < n; j++ { t := float64(s[j+1]-s[i])/float64(j-i+1) + dfs(j+1, k-1) ans = math.Max(ans, t) } f[i][k] = ans return ans } return dfs(0, k) }
-
function largestSumOfAverages(nums: number[], k: number): number { const n = nums.length; const s: number[] = Array(n + 1).fill(0); for (let i = 0; i < n; i++) { s[i + 1] = s[i] + nums[i]; } const f: number[][] = Array.from({ length: n }, () => Array(k + 1).fill(0)); const dfs = (i: number, k: number): number => { if (i === n) { return 0; } if (f[i][k] > 0) { return f[i][k]; } if (k === 1) { return (s[n] - s[i]) / (n - i); } for (let j = i + 1; j < n; j++) { f[i][k] = Math.max(f[i][k], dfs(j, k - 1) + (s[j] - s[i]) / (j - i)); } return f[i][k]; }; return dfs(0, k); }