Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/812.html

812. Largest Triangle Area (Easy)

You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.

Example:
Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]]
Output: 2
Explanation: 
The five points are show in the figure below. The red triangle is the largest.

Notes:

  • 3 <= points.length <= 50.
  • No points will be duplicated.
  •  -50 <= points[i][j] <= 50.
  • Answers within 10^-6 of the true value will be accepted as correct.

 

Companies:
Google

Related Topics:
Math

Solution 1.

  • class Solution {
        public double largestTriangleArea(int[][] points) {
            double largestArea = 0;
            int length = points.length;
            for (int i = 0; i < length; i++) {
                int[] point1 = points[i];
                for (int j = i + 1; j < length; j++) {
                    int[] point2 = points[j];
                    for (int k = j + 1; k < length; k++) {
                        int[] point3 = points[k];
                        if (sameLine(point1, point2, point3))
                            continue;
                        double area = getArea(point1, point2, point3);
                        largestArea = Math.max(largestArea, area);
                    }
                }
            }
            return largestArea;
        }
    
        public boolean sameLine(int[] point1, int[] point2, int[] point3) {
            int delta1X = point2[0] - point1[0], delta1Y = point2[1] - point1[1];
            int delta2X = point3[0] - point2[0], delta2Y = point3[1] - point2[1];
            return delta1X * delta2Y == delta2X * delta1Y;
        }
    
        public double getArea(int[] point1, int[] point2, int[] point3) {
            double side1 = getDistance(point1, point2);
            double side2 = getDistance(point2, point3);
            double side3 = getDistance(point3, point1);
            double halfPerimeter = (side1 + side2 + side3) / 2;
            double area = Math.sqrt(halfPerimeter * (halfPerimeter - side1) * (halfPerimeter - side2) * (halfPerimeter - side3));
            return area;
        }
    
        public double getDistance(int[] point1, int[] point2) {
            return Math.sqrt(((double) point2[0] - (double) point1[0]) * ((double) point2[0] - (double) point1[0]) + ((double) point2[1] - (double) point1[1]) * ((double) point2[1] - (double) point1[1]));
        }
    }
    
    ############
    
    class Solution {
        public double largestTriangleArea(int[][] points) {
            double ans = 0;
            for (int[] p1 : points) {
                int x1 = p1[0], y1 = p1[1];
                for (int[] p2 : points) {
                    int x2 = p2[0], y2 = p2[1];
                    for (int[] p3 : points) {
                        int x3 = p3[0], y3 = p3[1];
                        int u1 = x2 - x1, v1 = y2 - y1;
                        int u2 = x3 - x1, v2 = y3 - y1;
                        double t = Math.abs(u1 * v2 - u2 * v1) / 2.0;
                        ans = Math.max(ans, t);
                    }
                }
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/largest-triangle-area/
    // Time: O(N^3)
    // Space: O(1)
    // Ref: https://leetcode.com/problems/largest-triangle-area/solution/
    class Solution {
    private:
        double area (vector<int> &a, vector<int> &b, vector<int> &c) {
            return .5 * abs(a[0]*b[1] + b[0]*c[1] + c[0]*a[1]
                           -a[1]*b[0] - b[1]*c[0] - c[1]*a[0]);
        }
    public:
        double largestTriangleArea(vector<vector<int>>& points) {
            double ans = 0;
            for (int i = 0, N = points.size(); i < N; ++i) {
                for (int j = i + 1; j < N; ++j) {
                    for (int k = j + 1; k < N; ++k) {
                        ans = max(ans, area(points[i], points[j], points[k]));
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def largestTriangleArea(self, points: List[List[int]]) -> float:
            ans = 0
            for x1, y1 in points:
                for x2, y2 in points:
                    for x3, y3 in points:
                        u1, v1 = x2 - x1, y2 - y1
                        u2, v2 = x3 - x1, y3 - y1
                        t = abs(u1 * v2 - u2 * v1) / 2
                        ans = max(ans, t)
            return ans
    
    ############
    
    class Solution:
        def largestTriangleArea(self, points):
            """
            :type points: List[List[int]]
            :rtype: float
            """
            res = 0
            N = len(points)
            for i in range(N - 2):
                for j in range(i + 1, N - 1):
                    for k in range(i + 2, N):
                        (x1, y1), (x2, y2), (x3, y3) = points[i], points[j], points[k]
                        res = max(res, 0.5 * abs(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)))
            return res
    
  • func largestTriangleArea(points [][]int) float64 {
    	ans := 0.0
    	for _, p1 := range points {
    		x1, y1 := p1[0], p1[1]
    		for _, p2 := range points {
    			x2, y2 := p2[0], p2[1]
    			for _, p3 := range points {
    				x3, y3 := p3[0], p3[1]
    				u1, v1 := x2-x1, y2-y1
    				u2, v2 := x3-x1, y3-y1
    				t := float64(abs(u1*v2-u2*v1)) / 2.0
    				ans = math.Max(ans, t)
    			}
    		}
    	}
    	return ans
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    

All Problems

All Solutions