Welcome to Subscribe On Youtube
  • /*
    Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and node values with a subtree of s. A subtree of s is a tree consists of a node in s and all of this node's descendants. The tree s could also be considered as a subtree of itself.
    
    Example 1:
    Given tree s:
    
         3
        / \
       4   5
      / \
     1   2
    Given tree t:
       4
      / \
     1   2
    Return true, because t has the same structure and node values with a subtree of s.
    Example 2:
    Given tree s:
    
         3
        / \
       4   5
      / \
     1   2
        /
       0
    Given tree t:
       4
      / \
     1   2
    Return false.
    
     */
    
    public class Subtree_of_Another_Tree {
    
    	public static void main(String[] args) {
    		Subtree_of_Another_Tree out = new Subtree_of_Another_Tree();
    		Solution s = out.new Solution();
    
    		TreeNode root = new TreeNode(3);
    		root.left = new TreeNode(4);
    		root.right = new TreeNode(5);
    		root.left.left = new TreeNode(1);
    		root.left.right = new TreeNode(2);
    
    		TreeNode t = new TreeNode(4);
    		t.left = new TreeNode(1);
    		t.right = new TreeNode(2);
    
    		System.out.println(s.isSubtree(root, t));
    	}
    
    
    	/**
    	 * Definition for a binary tree node.
    	 * public class TreeNode {
    	 *     int val;
    	 *     TreeNode left;
    	 *     TreeNode right;
    	 *     TreeNode(int x) { val = x; }
    	 * }
    	 */
    	public class Solution {
    	    public boolean isSubtree(TreeNode s, TreeNode t) {
    
    	        if(s == null && t == null) {
    	            return true;
    	        }
    
    	        if((s == null && t != null) || (s != null && t == null)) {
    	            return false;
    	        }
    
    	        // key is to have a same tree check, or else will be skip level same
    	        return isSameTree(s, t) || isSubtree(s.left, t) || (isSubtree(s.right, t));
    	    }
    
    	    public boolean isSameTree(TreeNode s, TreeNode t) {
    
    	        if(s == null && t == null) {
    	            return true;
    	        }
    
    	        if((s == null && t != null) || (s != null && t == null)) {
    	            return false;
    	        }
    
    	    	return s.val == t.val && isSameTree(s.left, t.left) && isSameTree(s.right, t.right);
    	    }
    	}
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean isSubtree(TreeNode root, TreeNode subRoot) {
            if (root == null) {
                return false;
            }
            return dfs(root, subRoot) || isSubtree(root.left, subRoot)
                || isSubtree(root.right, subRoot);
        }
    
        private boolean dfs(TreeNode root1, TreeNode root2) {
            if (root1 == null && root2 == null) {
                return true;
            }
            if (root1 == null || root2 == null) {
                return false;
            }
            return root1.val == root2.val && dfs(root1.left, root2.left)
                && dfs(root1.right, root2.right);
        }
    }
    
  • // OJ: https://leetcode.com/problems/shortest-unsorted-continuous-subarray
    // Time: O(ST) where S and T are the node count of s and t.
    // Space: O(H) where H is the height of s.
    class Solution {
    private:
        bool isSameTree(TreeNode* s, TreeNode* t) {
            return (!s && !t) || (s && t && s->val == t->val && isSameTree(s->left, t->left) && isSameTree(s->right, t->right));
        }
    public:
        bool isSubtree(TreeNode* s, TreeNode* t) {
            return isSameTree(s, t) || (s && (isSubtree(s->left, t) || isSubtree(s->right, t)));
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool:
            def dfs(root1, root2):
                if root1 is None and root2 is None:
                    return True
                if root1 is None or root2 is None:
                    return False
                return (
                    root1.val == root2.val
                    and dfs(root1.left, root2.left)
                    and dfs(root1.right, root2.right)
                )
    
            if root is None:
                return False
            return (
                dfs(root, subRoot)
                or self.isSubtree(root.left, subRoot)
                or self.isSubtree(root.right, subRoot)
            )
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def isSubtree(self, s, t):
        """
        :type s: TreeNode
        :type t: TreeNode
        :rtype: bool
        """
    
        def serialize(root):
          ans = []
          stack = [(root, 1)]
          while stack:
            node, p = stack.pop()
            if not node:
              ans.append("#")
              continue
            if p == 0:
              ans.append("|" + str(node.val))
            else:
              stack.append((node.right, 1))
              stack.append((node.left, 1))
              stack.append((node, 0))
          return ",".join(ans)
    
        return serialize(t) in serialize(s)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
    	if root == nil {
    		return false
    	}
    	var dfs func(root1, root2 *TreeNode) bool
    	dfs = func(root1, root2 *TreeNode) bool {
    		if root1 == nil && root2 == nil {
    			return true
    		}
    		if root1 == nil || root2 == nil {
    			return false
    		}
    		return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)
    	}
    	return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    const dfs = (root: TreeNode | null, subRoot: TreeNode | null) => {
        if (root == null && subRoot == null) {
            return true;
        }
        if (root == null || subRoot == null || root.val !== subRoot.val) {
            return false;
        }
        return dfs(root.left, subRoot.left) && dfs(root.right, subRoot.right);
    };
    
    function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean {
        if (root == null) {
            return false;
        }
        return (
            dfs(root, subRoot) ||
            isSubtree(root.left, subRoot) ||
            isSubtree(root.right, subRoot)
        );
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @param {TreeNode} subRoot
     * @return {boolean}
     */
    var isSubtree = function (root, subRoot) {
        if (!root) return false;
        let dfs = function (root1, root2) {
            if (!root1 && !root2) {
                return true;
            }
            if (!root1 || !root2) {
                return false;
            }
            return (
                root1.val == root2.val &&
                dfs(root1.left, root2.left) &&
                dfs(root1.right, root2.right)
            );
        };
        return (
            dfs(root, subRoot) ||
            isSubtree(root.left, subRoot) ||
            isSubtree(root.right, subRoot)
        );
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            if root.is_none() && sub_root.is_none() {
                return true;
            }
            if root.is_none() || sub_root.is_none() {
                return false;
            }
            let root = root.as_ref().unwrap().borrow();
            let sub_root = sub_root.as_ref().unwrap().borrow();
            root.val == sub_root.val
                && Self::dfs(&root.left, &sub_root.left)
                && Self::dfs(&root.right, &sub_root.right)
        }
    
        fn help(
            root: &Option<Rc<RefCell<TreeNode>>>,
            sub_root: &Option<Rc<RefCell<TreeNode>>>,
        ) -> bool {
            if root.is_none() {
                return false;
            }
            Self::dfs(root, sub_root)
                || Self::help(&root.as_ref().unwrap().borrow().left, sub_root)
                || Self::help(&root.as_ref().unwrap().borrow().right, sub_root)
        }
    
        pub fn is_subtree(
            root: Option<Rc<RefCell<TreeNode>>>,
            sub_root: Option<Rc<RefCell<TreeNode>>>,
        ) -> bool {
            Self::help(&root, &sub_root)
        }
    }
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public boolean isSubtree(TreeNode s, TreeNode t) {
            if (s == null)
                return t == null;
            if (t == null || same(s, t))
                return true;
            return isSubtree(s.left, t) || isSubtree(s.right, t);
        }
    
        public boolean same(TreeNode s, TreeNode t) {
            if (s == null && t == null)
                return true;
            if (s == null || t == null)
                return false;
            return s.val == t.val && same(s.left, t.left) && same(s.right, t.right);
        }
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean isSubtree(TreeNode root, TreeNode subRoot) {
            if (root == null) {
                return false;
            }
            return dfs(root, subRoot) || isSubtree(root.left, subRoot)
                || isSubtree(root.right, subRoot);
        }
    
        private boolean dfs(TreeNode root1, TreeNode root2) {
            if (root1 == null && root2 == null) {
                return true;
            }
            if (root1 == null || root2 == null) {
                return false;
            }
            return root1.val == root2.val && dfs(root1.left, root2.left)
                && dfs(root1.right, root2.right);
        }
    }
    
  • // OJ: https://leetcode.com/problems/shortest-unsorted-continuous-subarray
    // Time: O(ST) where S and T are the node count of s and t.
    // Space: O(H) where H is the height of s.
    class Solution {
    private:
        bool isSameTree(TreeNode* s, TreeNode* t) {
            return (!s && !t) || (s && t && s->val == t->val && isSameTree(s->left, t->left) && isSameTree(s->right, t->right));
        }
    public:
        bool isSubtree(TreeNode* s, TreeNode* t) {
            return isSameTree(s, t) || (s && (isSubtree(s->left, t) || isSubtree(s->right, t)));
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool:
            def dfs(root1, root2):
                if root1 is None and root2 is None:
                    return True
                if root1 is None or root2 is None:
                    return False
                return (
                    root1.val == root2.val
                    and dfs(root1.left, root2.left)
                    and dfs(root1.right, root2.right)
                )
    
            if root is None:
                return False
            return (
                dfs(root, subRoot)
                or self.isSubtree(root.left, subRoot)
                or self.isSubtree(root.right, subRoot)
            )
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def isSubtree(self, s, t):
        """
        :type s: TreeNode
        :type t: TreeNode
        :rtype: bool
        """
    
        def serialize(root):
          ans = []
          stack = [(root, 1)]
          while stack:
            node, p = stack.pop()
            if not node:
              ans.append("#")
              continue
            if p == 0:
              ans.append("|" + str(node.val))
            else:
              stack.append((node.right, 1))
              stack.append((node.left, 1))
              stack.append((node, 0))
          return ",".join(ans)
    
        return serialize(t) in serialize(s)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
    	if root == nil {
    		return false
    	}
    	var dfs func(root1, root2 *TreeNode) bool
    	dfs = func(root1, root2 *TreeNode) bool {
    		if root1 == nil && root2 == nil {
    			return true
    		}
    		if root1 == nil || root2 == nil {
    			return false
    		}
    		return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)
    	}
    	return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    const dfs = (root: TreeNode | null, subRoot: TreeNode | null) => {
        if (root == null && subRoot == null) {
            return true;
        }
        if (root == null || subRoot == null || root.val !== subRoot.val) {
            return false;
        }
        return dfs(root.left, subRoot.left) && dfs(root.right, subRoot.right);
    };
    
    function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean {
        if (root == null) {
            return false;
        }
        return (
            dfs(root, subRoot) ||
            isSubtree(root.left, subRoot) ||
            isSubtree(root.right, subRoot)
        );
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @param {TreeNode} subRoot
     * @return {boolean}
     */
    var isSubtree = function (root, subRoot) {
        if (!root) return false;
        let dfs = function (root1, root2) {
            if (!root1 && !root2) {
                return true;
            }
            if (!root1 || !root2) {
                return false;
            }
            return (
                root1.val == root2.val &&
                dfs(root1.left, root2.left) &&
                dfs(root1.right, root2.right)
            );
        };
        return (
            dfs(root, subRoot) ||
            isSubtree(root.left, subRoot) ||
            isSubtree(root.right, subRoot)
        );
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            if root.is_none() && sub_root.is_none() {
                return true;
            }
            if root.is_none() || sub_root.is_none() {
                return false;
            }
            let root = root.as_ref().unwrap().borrow();
            let sub_root = sub_root.as_ref().unwrap().borrow();
            root.val == sub_root.val
                && Self::dfs(&root.left, &sub_root.left)
                && Self::dfs(&root.right, &sub_root.right)
        }
    
        fn help(
            root: &Option<Rc<RefCell<TreeNode>>>,
            sub_root: &Option<Rc<RefCell<TreeNode>>>,
        ) -> bool {
            if root.is_none() {
                return false;
            }
            Self::dfs(root, sub_root)
                || Self::help(&root.as_ref().unwrap().borrow().left, sub_root)
                || Self::help(&root.as_ref().unwrap().borrow().right, sub_root)
        }
    
        pub fn is_subtree(
            root: Option<Rc<RefCell<TreeNode>>>,
            sub_root: Option<Rc<RefCell<TreeNode>>>,
        ) -> bool {
            Self::help(&root, &sub_root)
        }
    }
    
    

All Problems

All Solutions