Welcome to Subscribe On Youtube
-
/* Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and node values with a subtree of s. A subtree of s is a tree consists of a node in s and all of this node's descendants. The tree s could also be considered as a subtree of itself. Example 1: Given tree s: 3 / \ 4 5 / \ 1 2 Given tree t: 4 / \ 1 2 Return true, because t has the same structure and node values with a subtree of s. Example 2: Given tree s: 3 / \ 4 5 / \ 1 2 / 0 Given tree t: 4 / \ 1 2 Return false. */ public class Subtree_of_Another_Tree { public static void main(String[] args) { Subtree_of_Another_Tree out = new Subtree_of_Another_Tree(); Solution s = out.new Solution(); TreeNode root = new TreeNode(3); root.left = new TreeNode(4); root.right = new TreeNode(5); root.left.left = new TreeNode(1); root.left.right = new TreeNode(2); TreeNode t = new TreeNode(4); t.left = new TreeNode(1); t.right = new TreeNode(2); System.out.println(s.isSubtree(root, t)); } /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isSubtree(TreeNode s, TreeNode t) { if(s == null && t == null) { return true; } if((s == null && t != null) || (s != null && t == null)) { return false; } // key is to have a same tree check, or else will be skip level same return isSameTree(s, t) || isSubtree(s.left, t) || (isSubtree(s.right, t)); } public boolean isSameTree(TreeNode s, TreeNode t) { if(s == null && t == null) { return true; } if((s == null && t != null) || (s != null && t == null)) { return false; } return s.val == t.val && isSameTree(s.left, t.left) && isSameTree(s.right, t.right); } } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public boolean isSubtree(TreeNode root, TreeNode subRoot) { if (root == null) { return false; } return dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot); } private boolean dfs(TreeNode root1, TreeNode root2) { if (root1 == null && root2 == null) { return true; } if (root1 == null || root2 == null) { return false; } return root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right); } }
-
// OJ: https://leetcode.com/problems/shortest-unsorted-continuous-subarray // Time: O(ST) where S and T are the node count of s and t. // Space: O(H) where H is the height of s. class Solution { private: bool isSameTree(TreeNode* s, TreeNode* t) { return (!s && !t) || (s && t && s->val == t->val && isSameTree(s->left, t->left) && isSameTree(s->right, t->right)); } public: bool isSubtree(TreeNode* s, TreeNode* t) { return isSameTree(s, t) || (s && (isSubtree(s->left, t) || isSubtree(s->right, t))); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool: def dfs(root1, root2): if root1 is None and root2 is None: return True if root1 is None or root2 is None: return False return ( root1.val == root2.val and dfs(root1.left, root2.left) and dfs(root1.right, root2.right) ) if root is None: return False return ( dfs(root, subRoot) or self.isSubtree(root.left, subRoot) or self.isSubtree(root.right, subRoot) ) ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isSubtree(self, s, t): """ :type s: TreeNode :type t: TreeNode :rtype: bool """ def serialize(root): ans = [] stack = [(root, 1)] while stack: node, p = stack.pop() if not node: ans.append("#") continue if p == 0: ans.append("|" + str(node.val)) else: stack.append((node.right, 1)) stack.append((node.left, 1)) stack.append((node, 0)) return ",".join(ans) return serialize(t) in serialize(s)
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func isSubtree(root *TreeNode, subRoot *TreeNode) bool { if root == nil { return false } var dfs func(root1, root2 *TreeNode) bool dfs = func(root1, root2 *TreeNode) bool { if root1 == nil && root2 == nil { return true } if root1 == nil || root2 == nil { return false } return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right) } return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot) }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ const dfs = (root: TreeNode | null, subRoot: TreeNode | null) => { if (root == null && subRoot == null) { return true; } if (root == null || subRoot == null || root.val !== subRoot.val) { return false; } return dfs(root.left, subRoot.left) && dfs(root.right, subRoot.right); }; function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean { if (root == null) { return false; } return ( dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot) ); }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @param {TreeNode} subRoot * @return {boolean} */ var isSubtree = function (root, subRoot) { if (!root) return false; let dfs = function (root1, root2) { if (!root1 && !root2) { return true; } if (!root1 || !root2) { return false; } return ( root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right) ); }; return ( dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot) ); };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>) -> bool { if root.is_none() && sub_root.is_none() { return true; } if root.is_none() || sub_root.is_none() { return false; } let root = root.as_ref().unwrap().borrow(); let sub_root = sub_root.as_ref().unwrap().borrow(); root.val == sub_root.val && Self::dfs(&root.left, &sub_root.left) && Self::dfs(&root.right, &sub_root.right) } fn help( root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>, ) -> bool { if root.is_none() { return false; } Self::dfs(root, sub_root) || Self::help(&root.as_ref().unwrap().borrow().left, sub_root) || Self::help(&root.as_ref().unwrap().borrow().right, sub_root) } pub fn is_subtree( root: Option<Rc<RefCell<TreeNode>>>, sub_root: Option<Rc<RefCell<TreeNode>>>, ) -> bool { Self::help(&root, &sub_root) } }
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public boolean isSubtree(TreeNode s, TreeNode t) { if (s == null) return t == null; if (t == null || same(s, t)) return true; return isSubtree(s.left, t) || isSubtree(s.right, t); } public boolean same(TreeNode s, TreeNode t) { if (s == null && t == null) return true; if (s == null || t == null) return false; return s.val == t.val && same(s.left, t.left) && same(s.right, t.right); } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public boolean isSubtree(TreeNode root, TreeNode subRoot) { if (root == null) { return false; } return dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot); } private boolean dfs(TreeNode root1, TreeNode root2) { if (root1 == null && root2 == null) { return true; } if (root1 == null || root2 == null) { return false; } return root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right); } }
-
// OJ: https://leetcode.com/problems/shortest-unsorted-continuous-subarray // Time: O(ST) where S and T are the node count of s and t. // Space: O(H) where H is the height of s. class Solution { private: bool isSameTree(TreeNode* s, TreeNode* t) { return (!s && !t) || (s && t && s->val == t->val && isSameTree(s->left, t->left) && isSameTree(s->right, t->right)); } public: bool isSubtree(TreeNode* s, TreeNode* t) { return isSameTree(s, t) || (s && (isSubtree(s->left, t) || isSubtree(s->right, t))); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool: def dfs(root1, root2): if root1 is None and root2 is None: return True if root1 is None or root2 is None: return False return ( root1.val == root2.val and dfs(root1.left, root2.left) and dfs(root1.right, root2.right) ) if root is None: return False return ( dfs(root, subRoot) or self.isSubtree(root.left, subRoot) or self.isSubtree(root.right, subRoot) ) ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isSubtree(self, s, t): """ :type s: TreeNode :type t: TreeNode :rtype: bool """ def serialize(root): ans = [] stack = [(root, 1)] while stack: node, p = stack.pop() if not node: ans.append("#") continue if p == 0: ans.append("|" + str(node.val)) else: stack.append((node.right, 1)) stack.append((node.left, 1)) stack.append((node, 0)) return ",".join(ans) return serialize(t) in serialize(s)
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func isSubtree(root *TreeNode, subRoot *TreeNode) bool { if root == nil { return false } var dfs func(root1, root2 *TreeNode) bool dfs = func(root1, root2 *TreeNode) bool { if root1 == nil && root2 == nil { return true } if root1 == nil || root2 == nil { return false } return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right) } return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot) }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ const dfs = (root: TreeNode | null, subRoot: TreeNode | null) => { if (root == null && subRoot == null) { return true; } if (root == null || subRoot == null || root.val !== subRoot.val) { return false; } return dfs(root.left, subRoot.left) && dfs(root.right, subRoot.right); }; function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean { if (root == null) { return false; } return ( dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot) ); }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @param {TreeNode} subRoot * @return {boolean} */ var isSubtree = function (root, subRoot) { if (!root) return false; let dfs = function (root1, root2) { if (!root1 && !root2) { return true; } if (!root1 || !root2) { return false; } return ( root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right) ); }; return ( dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot) ); };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>) -> bool { if root.is_none() && sub_root.is_none() { return true; } if root.is_none() || sub_root.is_none() { return false; } let root = root.as_ref().unwrap().borrow(); let sub_root = sub_root.as_ref().unwrap().borrow(); root.val == sub_root.val && Self::dfs(&root.left, &sub_root.left) && Self::dfs(&root.right, &sub_root.right) } fn help( root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>, ) -> bool { if root.is_none() { return false; } Self::dfs(root, sub_root) || Self::help(&root.as_ref().unwrap().borrow().left, sub_root) || Self::help(&root.as_ref().unwrap().borrow().right, sub_root) } pub fn is_subtree( root: Option<Rc<RefCell<TreeNode>>>, sub_root: Option<Rc<RefCell<TreeNode>>>, ) -> bool { Self::help(&root, &sub_root) } }