Welcome to Subscribe On Youtube

572. Subtree of Another Tree

Description

Given the roots of two binary trees root and subRoot, return true if there is a subtree of root with the same structure and node values of subRoot and false otherwise.

A subtree of a binary tree tree is a tree that consists of a node in tree and all of this node's descendants. The tree tree could also be considered as a subtree of itself.

 

Example 1:

Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true

Example 2:

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false

 

Constraints:

  • The number of nodes in the root tree is in the range [1, 2000].
  • The number of nodes in the subRoot tree is in the range [1, 1000].
  • -104 <= root.val <= 104
  • -104 <= subRoot.val <= 104

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean isSubtree(TreeNode root, TreeNode subRoot) {
            if (root == null) {
                return false;
            }
            return dfs(root, subRoot) || isSubtree(root.left, subRoot)
                || isSubtree(root.right, subRoot);
        }
    
        private boolean dfs(TreeNode root1, TreeNode root2) {
            if (root1 == null && root2 == null) {
                return true;
            }
            if (root1 == null || root2 == null) {
                return false;
            }
            return root1.val == root2.val && dfs(root1.left, root2.left)
                && dfs(root1.right, root2.right);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        bool isSubtree(TreeNode* root, TreeNode* subRoot) {
            if (!root) return 0;
            return dfs(root, subRoot) || isSubtree(root->left, subRoot) || isSubtree(root->right, subRoot);
        }
    
        bool dfs(TreeNode* root1, TreeNode* root2) {
            if (!root1 && !root2) return 1;
            if (!root1 || !root2) return 0;
            return root1->val == root2->val && dfs(root1->left, root2->left) && dfs(root1->right, root2->right);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isSubtree(self, root: TreeNode, subRoot: TreeNode) -> bool:
            def dfs(root1, root2):
                if root1 is None and root2 is None:
                    return True
                if root1 is None or root2 is None:
                    return False
                return (
                    root1.val == root2.val
                    and dfs(root1.left, root2.left)
                    and dfs(root1.right, root2.right)
                )
    
            if root is None:
                return False
            return (
                dfs(root, subRoot)
                or self.isSubtree(root.left, subRoot)
                or self.isSubtree(root.right, subRoot)
            )
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
    	if root == nil {
    		return false
    	}
    	var dfs func(root1, root2 *TreeNode) bool
    	dfs = func(root1, root2 *TreeNode) bool {
    		if root1 == nil && root2 == nil {
    			return true
    		}
    		if root1 == nil || root2 == nil {
    			return false
    		}
    		return root1.Val == root2.Val && dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)
    	}
    	return dfs(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    const dfs = (root: TreeNode | null, subRoot: TreeNode | null) => {
        if (root == null && subRoot == null) {
            return true;
        }
        if (root == null || subRoot == null || root.val !== subRoot.val) {
            return false;
        }
        return dfs(root.left, subRoot.left) && dfs(root.right, subRoot.right);
    };
    
    function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean {
        if (root == null) {
            return false;
        }
        return dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @param {TreeNode} subRoot
     * @return {boolean}
     */
    var isSubtree = function (root, subRoot) {
        if (!root) return false;
        let dfs = function (root1, root2) {
            if (!root1 && !root2) {
                return true;
            }
            if (!root1 || !root2) {
                return false;
            }
            return (
                root1.val == root2.val && dfs(root1.left, root2.left) && dfs(root1.right, root2.right)
            );
        };
        return dfs(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, sub_root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            if root.is_none() && sub_root.is_none() {
                return true;
            }
            if root.is_none() || sub_root.is_none() {
                return false;
            }
            let root = root.as_ref().unwrap().borrow();
            let sub_root = sub_root.as_ref().unwrap().borrow();
            root.val == sub_root.val &&
                Self::dfs(&root.left, &sub_root.left) &&
                Self::dfs(&root.right, &sub_root.right)
        }
    
        fn help(
            root: &Option<Rc<RefCell<TreeNode>>>,
            sub_root: &Option<Rc<RefCell<TreeNode>>>
        ) -> bool {
            if root.is_none() {
                return false;
            }
            Self::dfs(root, sub_root) ||
                Self::help(&root.as_ref().unwrap().borrow().left, sub_root) ||
                Self::help(&root.as_ref().unwrap().borrow().right, sub_root)
        }
    
        pub fn is_subtree(
            root: Option<Rc<RefCell<TreeNode>>>,
            sub_root: Option<Rc<RefCell<TreeNode>>>
        ) -> bool {
            Self::help(&root, &sub_root)
        }
    }
    
    

All Problems

All Solutions