Welcome to Subscribe On Youtube

365. Water and Jug Problem

Description

You are given two jugs with capacities jug1Capacity and jug2Capacity liters. There is an infinite amount of water supply available. Determine whether it is possible to measure exactly targetCapacity liters using these two jugs.

If targetCapacity liters of water are measurable, you must have targetCapacity liters of water contained within one or both buckets by the end.

Operations allowed:

  • Fill any of the jugs with water.
  • Empty any of the jugs.
  • Pour water from one jug into another till the other jug is completely full, or the first jug itself is empty.

 

Example 1:

Input: jug1Capacity = 3, jug2Capacity = 5, targetCapacity = 4
Output: true
Explanation: The famous Die Hard example 

Example 2:

Input: jug1Capacity = 2, jug2Capacity = 6, targetCapacity = 5
Output: false

Example 3:

Input: jug1Capacity = 1, jug2Capacity = 2, targetCapacity = 3
Output: true

 

Constraints:

  • 1 <= jug1Capacity, jug2Capacity, targetCapacity <= 106

Solutions

  • class Solution {
        public boolean canMeasureWater(int jug1Capacity, int jug2Capacity, int targetCapacity) {
            if (jug1Capacity + jug2Capacity < targetCapacity) {
                return false;
            }
            if (jug1Capacity == 0 || jug2Capacity == 0) {
                return targetCapacity == 0 || jug1Capacity + jug2Capacity == targetCapacity;
            }
            return targetCapacity % gcd(jug1Capacity, jug2Capacity) == 0;
        }
    
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution {
    public:
        bool canMeasureWater(int jug1Capacity, int jug2Capacity, int targetCapacity) {
            if (jug1Capacity + jug2Capacity < targetCapacity) return false;
            if (jug1Capacity == 0 || jug2Capacity == 0)
                return targetCapacity == 0 || jug1Capacity + jug2Capacity == targetCapacity;
            return targetCapacity % gcd(jug1Capacity, jug2Capacity) == 0;
        }
    
        int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    };
    
  • class Solution:
        def canMeasureWater(
            self, jug1Capacity: int, jug2Capacity: int, targetCapacity: int
        ) -> bool:
            if jug1Capacity + jug2Capacity < targetCapacity:
                return False
            if jug1Capacity == 0 or jug2Capacity == 0:
                return targetCapacity == 0 or jug1Capacity + jug2Capacity == targetCapacity
            return targetCapacity % gcd(jug1Capacity, jug2Capacity) == 0
    
    
  • func canMeasureWater(jug1Capacity int, jug2Capacity int, targetCapacity int) bool {
    	if jug1Capacity+jug2Capacity < targetCapacity {
    		return false
    	}
    	if jug1Capacity == 0 || jug2Capacity == 0 {
    		return targetCapacity == 0 || jug1Capacity+jug2Capacity == targetCapacity
    	}
    
    	var gcd func(a, b int) int
    	gcd = func(a, b int) int {
    		if b == 0 {
    			return a
    		}
    		return gcd(b, a%b)
    	}
    	return targetCapacity%gcd(jug1Capacity, jug2Capacity) == 0
    }
    
  • using System;
    
    public class Solution {
        public bool CanMeasureWater(int x, int y, int z) {
            if (x == 0 || y == 0) return z == x || z == y;
            var gcd = GetGcd(x, y);
            return z >= 0 && z <= x + y && z % gcd == 0;
        }
    
        private int GetGcd(int x, int y)
        {
            while (x > 0)
            {
                var quotient = x / y;
                var reminder = x % y;
                if (reminder == 0)
                {
                    return y;
                }
                x = y;
                y = reminder;
            }
            throw new Exception("Invalid x or y");
        }
    }
    

All Problems

All Solutions