# 363. Max Sum of Rectangle No Larger Than K

## Description

Given an m x n matrix matrix and an integer k, return the max sum of a rectangle in the matrix such that its sum is no larger than k.

It is guaranteed that there will be a rectangle with a sum no larger than k.

Example 1:

Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of the blue rectangle [[0, 1], [-2, 3]] is 2, and 2 is the max number no larger than k (k = 2).


Example 2:

Input: matrix = [[2,2,-1]], k = 3
Output: 3


Constraints:

• m == matrix.length
• n == matrix[i].length
• 1 <= m, n <= 100
• -100 <= matrix[i][j] <= 100
• -105 <= k <= 105

Follow up: What if the number of rows is much larger than the number of columns?

## Solutions

• class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
int m = matrix.length;
int n = matrix[0].length;
final int inf = 1 << 30;
int ans = -inf;
for (int i = 0; i < m; ++i) {
int[] nums = new int[n];
for (int j = i; j < m; ++j) {
for (int h = 0; h < n; ++h) {
nums[h] += matrix[j][h];
}
int s = 0;
TreeSet<Integer> ts = new TreeSet<>();
for (int x : nums) {
s += x;
Integer y = ts.ceiling(s - k);
if (y != null) {
ans = Math.max(ans, s - y);
}
}
}
}
return ans;
}
}

• class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
int m = matrix.size(), n = matrix[0].size();
const int inf = 1 << 30;
int ans = -inf;
for (int i = 0; i < m; ++i) {
vector<int> nums(n);
for (int j = i; j < m; ++j) {
for (int h = 0; h < n; ++h) {
nums[h] += matrix[j][h];
}
set<int> ts;
int s = 0;
ts.insert(0);
for (int x : nums) {
s += x;
auto it = ts.lower_bound(s - k);
if (it != ts.end()) {
ans = max(ans, s - *it);
}
ts.insert(s);
}
}
}
return ans;
}
};

• from sortedcontainers import SortedSet

class Solution:
def maxSumSubmatrix(self, matrix: List[List[int]], k: int) -> int:
m, n = len(matrix), len(matrix[0])
ans = -inf
for i in range(m):
nums = [0] * n
for j in range(i, m):
for h in range(n):
nums[h] += matrix[j][h]
s = 0
ts = SortedSet([0])
for x in nums:
s += x
p = ts.bisect_left(s - k)
if p != len(ts):
ans = max(ans, s - ts[p])
return ans


• func maxSumSubmatrix(matrix [][]int, k int) int {
m, n := len(matrix), len(matrix[0])
const inf = 1 << 30
ans := -inf
for i := 0; i < m; i++ {
nums := make([]int, n)
for j := i; j < m; j++ {
for h := 0; h < n; h++ {
nums[h] += matrix[j][h]
}
s := 0
rbt := redblacktree.NewWithIntComparator()
rbt.Put(0, nil)
for _, x := range nums {
s += x
if y, ok := rbt.Ceiling(s - k); ok {
ans = max(ans, s-y.Key.(int))
}
rbt.Put(s, nil)
}
}

}
return ans
}

• function maxSumSubmatrix(matrix: number[][], k: number): number {
const m = matrix.length;
const n = matrix[0].length;
let ans = -Infinity;
for (let i = 0; i < m; ++i) {
const nums: number[] = new Array(n).fill(0);
for (let j = i; j < m; ++j) {
for (let h = 0; h < n; ++h) {
nums[h] += matrix[j][h];
}
let s = 0;
const ts: TreeSet<number> = new TreeSet<number>();
for (const x of nums) {
s += x;
const p = ts.ceil(s - k);
if (p !== undefined) {
ans = Math.max(ans, s - p);
}
}
}
}
return ans;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
data: T;
count: number;
left: RBTreeNode<T> | null;
right: RBTreeNode<T> | null;
parent: RBTreeNode<T> | null;
color: number;
constructor(data: T) {
this.data = data;
this.left = this.right = this.parent = null;
this.color = 0;
this.count = 1;
}

sibling(): RBTreeNode<T> | null {
if (!this.parent) return null; // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left;
}

isOnLeft(): boolean {
return this === this.parent!.left;
}

hasRedChild(): boolean {
return (
Boolean(this.left && this.left.color === 0) ||
Boolean(this.right && this.right.color === 0)
);
}
}

class RBTree<T> {
root: RBTreeNode<T> | null;
lt: (l: T, r: T) => boolean;
constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
this.root = null;
this.lt = (l: T, r: T) => compare(l, r) < 0;
}

rotateLeft(pt: RBTreeNode<T>): void {
const right = pt.right!;
pt.right = right.left;

if (pt.right) pt.right.parent = pt;
right.parent = pt.parent;

if (!pt.parent) this.root = right;
else if (pt === pt.parent.left) pt.parent.left = right;
else pt.parent.right = right;

right.left = pt;
pt.parent = right;
}

rotateRight(pt: RBTreeNode<T>): void {
const left = pt.left!;
pt.left = left.right;

if (pt.left) pt.left.parent = pt;
left.parent = pt.parent;

if (!pt.parent) this.root = left;
else if (pt === pt.parent.left) pt.parent.left = left;
else pt.parent.right = left;

left.right = pt;
pt.parent = left;
}

swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color;
p1.color = p2.color;
p2.color = tmp;
}

swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data;
p1.data = p2.data;
p2.data = tmp;
}

fixAfterInsert(pt: RBTreeNode<T>): void {
let parent = null;
let grandParent = null;

while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent;
grandParent = pt.parent.parent;

/*  Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right;

/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent;
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent);
pt = parent;
parent = pt.parent;
}

/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent);
this.swapColor(parent!, grandParent);
pt = parent!;
}
} else {
/* Case : B
Parent of pt is right child of Grand-parent of pt */
const uncle = grandParent!.left;

/*  Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle != null && uncle.color === 0) {
grandParent!.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent!;
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent);
pt = parent;
parent = pt.parent;
}

/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!);
this.swapColor(parent!, grandParent!);
pt = parent!;
}
}
}
this.root!.color = 1;
}

delete(val: T): boolean {
const node = this.find(val);
if (!node) return false;
node.count--;
if (!node.count) this.deleteNode(node);
return true;
}

deleteAll(val: T): boolean {
const node = this.find(val);
if (!node) return false;
this.deleteNode(node);
return true;
}

deleteNode(v: RBTreeNode<T>): void {
const u = BSTreplace(v);

// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1;
const parent = v.parent!;

if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null;
// v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v);
} else {
// u or v is red
if (v.sibling()) {
// sibling is not null, make it red"
v.sibling()!.color = 0;
}
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null;
else parent.right = null;
}
return;
}

if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data;
v.left = v.right = null;
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u;
else parent.right = u;
u.parent = parent;
if (uvBlack) this.fixDoubleBlack(u);
// u and v both black, fix double black at u
else u.color = 1; // u or v red, color u black
}
return;
}

// v has 2 children, swap data with successor and recurse
this.swapData(u, v);
this.deleteNode(u);

// find node that replaces a deleted node in BST
function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right);
// when leaf
if (!x.left && !x.right) return null;
// when single child
return x.left ?? x.right;
}
// find node that do not have a left child
// in the subtree of the given node
function successor(x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x;
while (temp.left) temp = temp.left;
return temp;
}
}

fixDoubleBlack(x: RBTreeNode<T>): void {
if (x === this.root) return; // Reached root

const sibling = x.sibling();
const parent = x.parent!;
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent);
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0;
sibling.color = 1;
if (sibling.isOnLeft()) this.rotateRight(parent);
// left case
else this.rotateLeft(parent); // right case
this.fixDoubleBlack(x);
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color;
sibling.color = parent.color;
this.rotateRight(parent);
} else {
// right left
sibling.left.color = parent.color;
this.rotateRight(sibling);
this.rotateLeft(parent);
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color;
this.rotateLeft(sibling);
this.rotateRight(parent);
} else {
// right right
sibling.right!.color = sibling.color;
sibling.color = parent.color;
this.rotateLeft(parent);
}
}
parent.color = 1;
} else {
// 2 black children
sibling.color = 0;
if (parent.color === 1) this.fixDoubleBlack(parent);
else parent.color = 1;
}
}
}
}

insert(data: T): boolean {
// search for a position to insert
let parent = this.root;
while (parent) {
if (this.lt(data, parent.data)) {
if (!parent.left) break;
else parent = parent.left;
} else if (this.lt(parent.data, data)) {
if (!parent.right) break;
else parent = parent.right;
} else break;
}

// insert node into parent
const node = new RBTreeNode(data);
if (!parent) this.root = node;
else if (this.lt(node.data, parent.data)) parent.left = node;
else if (this.lt(parent.data, node.data)) parent.right = node;
else {
parent.count++;
return false;
}
node.parent = parent;
this.fixAfterInsert(node);
return true;
}

find(data: T): RBTreeNode<T> | null {
let p = this.root;
while (p) {
if (this.lt(data, p.data)) {
p = p.left;
} else if (this.lt(p.data, data)) {
p = p.right;
} else break;
}
return p ?? null;
}

*inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.inOrder(root.left!)) yield v;
yield root.data;
for (const v of this.inOrder(root.right!)) yield v;
}

*reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.reverseInOrder(root.right!)) yield v;
yield root.data;
for (const v of this.reverseInOrder(root.left!)) yield v;
}
}

class TreeSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}

size(): number {
return this._size;
}

has(val: T): boolean {
return !!this.tree.find(val);
}

const successful = this.tree.insert(val);
this._size += successful ? 1 : 0;
return successful;
}

delete(val: T): boolean {
const deleted = this.tree.deleteAll(val);
this._size -= deleted ? 1 : 0;
return deleted;
}

ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}

floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}

higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}

lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}

first(): T | undefined {
return this.tree.inOrder().next().value;
}

last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}

shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}

pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}

*[Symbol.iterator](): Generator<T, void, void> {
for (const val of this.values()) yield val;
}

*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}

*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) yield val;
return undefined;
}

/**
* Return a generator for reverse order traversing the set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) yield val;
return undefined;
}
}

class TreeMultiSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}

size(): number {
return this._size;
}

has(val: T): boolean {
return !!this.tree.find(val);
}

const successful = this.tree.insert(val);
this._size++;
return successful;
}

delete(val: T): boolean {
const successful = this.tree.delete(val);
if (!successful) return false;
this._size--;
return true;
}

count(val: T): number {
const node = this.tree.find(val);
return node ? node.count : 0;
}

ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}

floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}

higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}

lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}

first(): T | undefined {
return this.tree.inOrder().next().value;
}

last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}

shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}

pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}

*[Symbol.iterator](): Generator<T, void, void> {
yield* this.values();
}

*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}

*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) {
let count = this.count(val);
while (count--) yield val;
}
return undefined;
}

/**
* Return a generator for reverse order traversing the multi-set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) {
let count = this.count(val);
while (count--) yield val;
}
return undefined;
}
}