Welcome to Subscribe On Youtube

303. Range Sum Query - Immutable

Description

Given an integer array nums, handle multiple queries of the following type:

  1. Calculate the sum of the elements of nums between indices left and right inclusive where left <= right.

Implement the NumArray class:

  • NumArray(int[] nums) Initializes the object with the integer array nums.
  • int sumRange(int left, int right) Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + ... + nums[right]).

 

Example 1:

Input
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
Output
[null, 1, -1, -3]

Explanation
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return (-2) + 0 + 3 = 1
numArray.sumRange(2, 5); // return 3 + (-5) + 2 + (-1) = -1
numArray.sumRange(0, 5); // return (-2) + 0 + 3 + (-5) + 2 + (-1) = -3

 

Constraints:

  • 1 <= nums.length <= 104
  • -105 <= nums[i] <= 105
  • 0 <= left <= right < nums.length
  • At most 104 calls will be made to sumRange.

Solutions

Solution 1: Prefix Sum

We create a prefix sum array $s$ of length $n + 1$, where $s[i]$ represents the prefix sum of the first $i$ elements, that is, $s[i] = \sum_{j=0}^{i-1} nums[j]$. Therefore, the sum of the elements between the indices $[left, right]$ can be expressed as $s[right + 1] - s[left]$.

The time complexity for initializing the prefix sum array $s$ is $O(n)$, and the time complexity for querying is $O(1)$. The space complexity is $O(n)$.

  • class NumArray {
        private int[] s;
    
        public NumArray(int[] nums) {
            int n = nums.length;
            s = new int[n + 1];
            for (int i = 0; i < n; ++i) {
                s[i + 1] = s[i] + nums[i];
            }
        }
    
        public int sumRange(int left, int right) {
            return s[right + 1] - s[left];
        }
    }
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * NumArray obj = new NumArray(nums);
     * int param_1 = obj.sumRange(left,right);
     */
    
  • class NumArray {
    public:
        NumArray(vector<int>& nums) {
            int n = nums.size();
            s.resize(n + 1);
            for (int i = 0; i < n; ++i) {
                s[i + 1] = s[i] + nums[i];
            }
        }
    
        int sumRange(int left, int right) {
            return s[right + 1] - s[left];
        }
    
    private:
        vector<int> s;
    };
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * NumArray* obj = new NumArray(nums);
     * int param_1 = obj->sumRange(left,right);
     */
    
  • '''
    >>> from itertools import accumulate
    >>> accumulate([1,2,3])
    <itertools.accumulate object at 0x108f38340>
    >>> list(accumulate([1,2,3]))
    [1, 3, 6]
    >>> list(accumulate([1,2,3], initial=0))
    [0, 1, 3, 6]
    >>> list(accumulate([1,2,3], initial=10))
    [10, 11, 13, 16]
    '''
    # note: when using python2, I always got error when importing it, via itertools.accumulate()
    #       switching to python3, then all good for itertools.accumulate()
    class NumArray:
        def __init__(self, nums: List[int]):
            self.s = list(accumulate(nums, initial=0))
    
        def sumRange(self, left: int, right: int) -> int:
            return self.s[right + 1] - self.s[left]
    
    
    # Your NumArray object will be instantiated and called as such:
    # obj = NumArray(nums)
    # param_1 = obj.sumRange(left,right)
    
    ############
    
    class NumArray(object):
      def __init__(self, nums):
        """
        initialize your data structure here.
        :type nums: List[int]
        """
        self.dp = [0] * (len(nums) + 1)
        for i in range(0, len(nums)):
          self.dp[i + 1] = self.dp[i] + nums[i]
    
      def sumRange(self, i, j):
        """
        sum of elements nums[i..j], inclusive.
        :type i: int
        :type j: int
        :rtype: int
        """
        return self.dp[j + 1] - self.dp[i]
    
    # Your NumArray object will be instantiated and called as such:
    # numArray = NumArray(nums)
    # numArray.sumRange(0, 1)
    # numArray.sumRange(1, 2)
    
    
  • type NumArray struct {
    	s []int
    }
    
    func Constructor(nums []int) NumArray {
    	n := len(nums)
    	s := make([]int, n+1)
    	for i, v := range nums {
    		s[i+1] = s[i] + v
    	}
    	return NumArray{s}
    }
    
    func (this *NumArray) SumRange(left int, right int) int {
    	return this.s[right+1] - this.s[left]
    }
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * obj := Constructor(nums);
     * param_1 := obj.SumRange(left,right);
     */
    
  • class NumArray {
        private s: number[];
    
        constructor(nums: number[]) {
            const n = nums.length;
            this.s = Array(n + 1).fill(0);
            for (let i = 0; i < n; ++i) {
                this.s[i + 1] = this.s[i] + nums[i];
            }
        }
    
        sumRange(left: number, right: number): number {
            return this.s[right + 1] - this.s[left];
        }
    }
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * var obj = new NumArray(nums)
     * var param_1 = obj.sumRange(left,right)
     */
    
    
  • /**
     * @param {number[]} nums
     */
    var NumArray = function (nums) {
        const n = nums.length;
        this.s = Array(n + 1).fill(0);
        for (let i = 0; i < n; ++i) {
            this.s[i + 1] = this.s[i] + nums[i];
        }
    };
    
    /**
     * @param {number} left
     * @param {number} right
     * @return {number}
     */
    NumArray.prototype.sumRange = function (left, right) {
        return this.s[right + 1] - this.s[left];
    };
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * var obj = new NumArray(nums)
     * var param_1 = obj.sumRange(left,right)
     */
    
    
  • class NumArray {
        /**
         * @param Integer[] $nums
         */
        function __construct($nums) {
            $this->s = [0];
            foreach ($nums as $x) {
                $this->s[] = $this->s[count($this->s) - 1] + $x;
            }
        }
    
        /**
         * @param Integer $left
         * @param Integer $right
         * @return Integer
         */
        function sumRange($left, $right) {
            return $this->s[$right + 1] - $this->s[$left];
        }
    }
    
    /**
     * Your NumArray object will be instantiated and called as such:
     * $obj = NumArray($nums);
     * $ret_1 = $obj->sumRange($left, $right);
     */
    
  • struct NumArray {
        s: Vec<i32>,
    }
    
    /**
     * `&self` means the method takes an immutable reference.
     * If you need a mutable reference, change it to `&mut self` instead.
     */
    impl NumArray {
        fn new(mut nums: Vec<i32>) -> Self {
            let n = nums.len();
            let mut s = vec![0; n + 1];
            for i in 0..n {
                s[i + 1] = s[i] + nums[i];
            }
            Self { s }
        }
    
        fn sum_range(&self, left: i32, right: i32) -> i32 {
            self.s[(right + 1) as usize] - self.s[left as usize]
        }
    }/**
     * Your NumArray object will be instantiated and called as such:
     * let obj = NumArray::new(nums);
     * let ret_1: i32 = obj.sum_range(left, right);
     */
    
    

All Problems

All Solutions