Welcome to Subscribe On Youtube

172. Factorial Trailing Zeroes

Description

Given an integer n, return the number of trailing zeroes in n!.

Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.

 

Example 1:

Input: n = 3
Output: 0
Explanation: 3! = 6, no trailing zero.

Example 2:

Input: n = 5
Output: 1
Explanation: 5! = 120, one trailing zero.

Example 3:

Input: n = 0
Output: 0

 

Constraints:

  • 0 <= n <= 104

 

Follow up: Could you write a solution that works in logarithmic time complexity?

Solutions

  • class Solution {
        public int trailingZeroes(int n) {
            int ans = 0;
            while (n > 0) {
                n /= 5;
                ans += n;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int trailingZeroes(int n) {
            int ans = 0;
            while (n) {
                n /= 5;
                ans += n;
            }
            return ans;
        }
    };
    
  • class Solution:
        def trailingZeroes(self, n: int) -> int:
            ans = 0
            while n:
                n //= 5
                ans += n
            return ans
    
    
  • func trailingZeroes(n int) int {
    	ans := 0
    	for n > 0 {
    		n /= 5
    		ans += n
    	}
    	return ans
    }
    
  • function trailingZeroes(n: number): number {
        let ans = 0;
        while (n > 0) {
            n = Math.floor(n / 5);
            ans += n;
        }
        return ans;
    }
    
    

All Problems

All Solutions