Welcome to Subscribe On Youtube
10. Regular Expression Matching
Description
Given an input string s
and a pattern p
, implement regular expression matching with support for '.'
and '*'
where:
'.'
Matches any single character.'*'
Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Example 1:
Input: s = "aa", p = "a" Output: false Explanation: "a" does not match the entire string "aa".
Example 2:
Input: s = "aa", p = "a*" Output: true Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".
Example 3:
Input: s = "ab", p = ".*" Output: true Explanation: ".*" means "zero or more (*) of any character (.)".
Constraints:
1 <= s.length <= 20
1 <= p.length <= 20
s
contains only lowercase English letters.p
contains only lowercase English letters,'.'
, and'*'
.- It is guaranteed for each appearance of the character
'*'
, there will be a previous valid character to match.
Solutions
Solution 1: Memoization Search
We design a function $dfs(i, j)$, which indicates whether the $i$-th character of $s$ matches the $j$-th character of $p$. The answer is $dfs(0, 0)$.
The calculation process of the function $dfs(i, j)$ is as follows:
- If $j$ has reached the end of $p$, then if $i$ has also reached the end of $s$, the match is successful, otherwise, the match fails.
- If the next character of $j$ is
'*'
, we can choose to match $0$ $s[i]$ characters, which is $dfs(i, j + 2)$. If $i \lt m$ and $s[i]$ matches $p[j]$, we can choose to match $1$ $s[i]$ character, which is $dfs(i + 1, j)$. - If the next character of $j$ is not
'*'
, then if $i \lt m$ and $s[i]$ matches $p[j]$, it is $dfs(i + 1, j + 1)$. Otherwise, the match fails.
During the process, we can use memoization search to avoid repeated calculations.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $s$ and $p$ respectively.
Solution 2: Dynamic Programming
We can convert the memoization search in Solution 1 into dynamic programming.
Define $f[i][j]$ to represent whether the first $i$ characters of string $s$ match the first $j$ characters of string $p$. The answer is $f[m][n]$. Initialize $f[0][0] = true$, indicating that the empty string and the empty regular expression match.
Similar to Solution 1, we can discuss different cases.
- If $p[j - 1]$ is
'*'
, we can choose to match $0$ $s[i - 1]$ characters, which is $f[i][j] = f[i][j - 2]$. If $s[i - 1]$ matches $p[j - 2]$, we can choose to match $1$ $s[i - 1]$ character, which is $f[i][j] = f[i][j] \lor f[i - 1][j]$. - If $p[j - 1]$ is not
'*'
, then if $s[i - 1]$ matches $p[j - 1]$, it is $f[i][j] = f[i - 1][j - 1]$. Otherwise, the match fails.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $s$ and $p$ respectively.
-
class Solution { public boolean isMatch(String s, String p) { int m = s.length(), n = p.length(); boolean[][] f = new boolean[m + 1][n + 1]; f[0][0] = true; for (int i = 0; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (p.charAt(j - 1) == '*') { f[i][j] = f[i][j - 2]; if (i > 0 && (p.charAt(j - 2) == '.' || p.charAt(j - 2) == s.charAt(i - 1))) { f[i][j] |= f[i - 1][j]; } } else if (i > 0 && (p.charAt(j - 1) == '.' || p.charAt(j - 1) == s.charAt(i - 1))) { f[i][j] = f[i - 1][j - 1]; } } } return f[m][n]; } }
-
class Solution { public: bool isMatch(string s, string p) { int m = s.size(), n = p.size(); bool f[m + 1][n + 1]; memset(f, false, sizeof f); f[0][0] = true; for (int i = 0; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (p[j - 1] == '*') { f[i][j] = f[i][j - 2]; if (i && (p[j - 2] == '.' || p[j - 2] == s[i - 1])) { f[i][j] |= f[i - 1][j]; } } else if (i && (p[j - 1] == '.' || p[j - 1] == s[i - 1])) { f[i][j] = f[i - 1][j - 1]; } } } return f[m][n]; } };
-
class Solution: def isMatch(self, s: str, p: str) -> bool: m, n = len(s), len(p) f = [[False] * (n + 1) for _ in range(m + 1)] f[0][0] = True for i in range(m + 1): for j in range(1, n + 1): if p[j - 1] == "*": f[i][j] = f[i][j - 2] if i > 0 and (p[j - 2] == "." or s[i - 1] == p[j - 2]): f[i][j] |= f[i - 1][j] elif i > 0 and (p[j - 1] == "." or s[i - 1] == p[j - 1]): f[i][j] = f[i - 1][j - 1] return f[m][n]
-
func isMatch(s string, p string) bool { m, n := len(s), len(p) f := make([][]bool, m+1) for i := range f { f[i] = make([]bool, n+1) } f[0][0] = true for i := 0; i <= m; i++ { for j := 1; j <= n; j++ { if p[j-1] == '*' { f[i][j] = f[i][j-2] if i > 0 && (p[j-2] == '.' || p[j-2] == s[i-1]) { f[i][j] = f[i][j] || f[i-1][j] } } else if i > 0 && (p[j-1] == '.' || p[j-1] == s[i-1]) { f[i][j] = f[i-1][j-1] } } } return f[m][n] }
-
/** * @param {string} s * @param {string} p * @return {boolean} */ var isMatch = function (s, p) { const m = s.length; const n = p.length; const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(false)); f[0][0] = true; for (let i = 0; i <= m; ++i) { for (let j = 1; j <= n; ++j) { if (p[j - 1] === '*') { f[i][j] = f[i][j - 2]; if (i && (p[j - 2] === '.' || p[j - 2] === s[i - 1])) { f[i][j] |= f[i - 1][j]; } } else if (i && (p[j - 1] === '.' || p[j - 1] === s[i - 1])) { f[i][j] = f[i - 1][j - 1]; } } } return f[m][n]; };
-
public class Solution { public bool IsMatch(string s, string p) { int m = s.Length, n = p.Length; bool[,] f = new bool[m + 1, n + 1]; f[0, 0] = true; for (int i = 0; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (p[j - 1] == '*') { f[i, j] = f[i, j - 2]; if (i > 0 && (p[j - 2] == '.' || p[j - 2] == s[i - 1])) { f[i, j] |= f[i - 1, j]; } } else if (i > 0 && (p[j - 1] == '.' || p[j - 1] == s[i - 1])) { f[i, j] = f[i - 1, j - 1]; } } } return f[m, n]; } }
-
impl Solution { #[allow(dead_code)] pub fn is_match(s: String, p: String) -> bool { let n = s.len(); let m = p.len(); let s = s.chars().collect::<Vec<char>>(); let p = p.chars().collect::<Vec<char>>(); let mut dp = vec![vec![false; m + 1]; n + 1]; // Initialize the dp vector dp[0][0] = true; for i in 1..=m { if p[i - 1] == '*' { dp[0][i] = dp[0][i - 2]; } } // Begin the actual dp process for i in 1..=n { for j in 1..=m { if s[i - 1] == p[j - 1] || p[j - 1] == '.' { dp[i][j] = dp[i - 1][j - 1]; } if p[j - 1] == '*' { if j >= 2 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') { dp[i][j] = dp[i - 1][j] || dp[i][j - 2]; } else if j >= 2 && s[i - 1] != p[j - 2] { dp[i][j] = dp[i][j - 2]; } } } } dp[n][m] } }
-
class Solution { /** * @param string $s * @param string $p * @return boolean */ function isMatch($s, $p) { $m = strlen($s); $n = strlen($p); $dp = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); $dp[0][0] = true; for ($j = 1; $j <= $n; $j++) { if ($p[$j - 1] == '*') { $dp[0][$j] = $dp[0][$j - 2]; } } for ($i = 1; $i <= $m; $i++) { for ($j = 1; $j <= $n; $j++) { if ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1]) { $dp[$i][$j] = $dp[$i - 1][$j - 1]; } elseif ($p[$j - 1] == '*') { $dp[$i][$j] = $dp[$i][$j - 2]; if ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1]) { $dp[$i][$j] = $dp[$i][$j] || $dp[$i - 1][$j]; } } else { $dp[$i][$j] = false; } } } return $dp[$m][$n]; } }