Welcome to Subscribe On Youtube
3800. Minimum Cost to Make Two Binary Strings Equal
Description
You are given two binary strings s and t, both of length n, and three positive integers flipCost, swapCost, and crossCost.
You are allowed to apply the following operations any number of times (in any order) to the strings s and t:
- Choose any index
iand flips[i]ort[i](change'0'to'1'or'1'to'0'). The cost of this operation isflipCost. - Choose two distinct indices
iandj, and swap eithers[i]ands[j]ort[i]andt[j]. The cost of this operation isswapCost. - Choose an index
iand swaps[i]witht[i]. The cost of this operation iscrossCost.
Return an integer denoting the minimum total cost needed to make the strings s and t equal.
Example 1:
Input: s = "01000", t = "10111", flipCost = 10, swapCost = 2, crossCost = 2
Output: 16
Explanation:
We can perform the following operations:
- Swap
s[0]ands[1](swapCost = 2). After this operation,s = "10000"andt = "10111". - Cross swap
s[2]andt[2](crossCost = 2). After this operation,s = "10100"andt = "10011". - Swap
s[2]ands[3](swapCost = 2). After this operation,s = "10010"andt = "10011". - Flip
s[4](flipCost = 10). After this operation,s = t = "10011".
The total cost is 2 + 2 + 2 + 10 = 16.
Example 2:
Input: s = "001", t = "110", flipCost = 2, swapCost = 100, crossCost = 100
Output: 6
Explanation:
Flipping all the bits of s makes the strings equal, and the total cost is 3 * flipCost = 3 * 2 = 6.
Example 3:
Input: s = "1010", t = "1010", flipCost = 5, swapCost = 5, crossCost = 5
Output: 0
Explanation:
The strings are already equal, so no operations are required.
Constraints:
n == s.length == t.length1 <= n <= 1051 <= flipCost, swapCost, crossCost <= 109sandtconsist only of the characters'0'and'1'.
Solutions
Solution 1
-
class Solution { public long minimumCost(String s, String t, int flipCost, int swapCost, int crossCost) { long[] diff = new long[2]; int n = s.length(); for (int i = 0; i < n; i++) { char c1 = s.charAt(i), c2 = t.charAt(i); if (c1 != c2) { diff[c1 - '0']++; } } long ans = (diff[0] + diff[1]) * flipCost; long mx = Math.max(diff[0], diff[1]); long mn = Math.min(diff[0], diff[1]); ans = Math.min(ans, mn * swapCost + (mx - mn) * flipCost); long avg = (mx + mn) / 2; ans = Math.min( ans, (avg - mn) * crossCost + avg * swapCost + (mx + mn - avg * 2) * flipCost); return ans; } } -
class Solution { public: long long minimumCost(string s, string t, int flipCost, int swapCost, int crossCost) { long long diff[2] = {0, 0}; int n = s.size(); for (int i = 0; i < n; i++) { if (s[i] != t[i]) { diff[s[i] - '0']++; } } long long ans = (diff[0] + diff[1]) * flipCost; long long mx = max(diff[0], diff[1]); long long mn = min(diff[0], diff[1]); ans = min(ans, mn * 1LL * swapCost + (mx - mn) * flipCost); long long avg = (mx + mn) / 2; ans = min(ans, (avg - mn) * crossCost + avg * swapCost + (mx + mn - avg * 2) * flipCost); return ans; } }; -
class Solution: def minimumCost( self, s: str, t: str, flipCost: int, swapCost: int, crossCost: int ) -> int: diff = [0] * 2 for c1, c2 in zip(s, t): if c1 != c2: diff[int(c1)] += 1 ans = (diff[0] + diff[1]) * flipCost mx = max(diff) mn = min(diff) ans = min(ans, mn * swapCost + (mx - mn) * flipCost) avg = (mx + mn) // 2 ans = min( ans, (avg - mn) * crossCost + avg * swapCost + (mx + mn - avg * 2) * flipCost, ) return ans -
func minimumCost(s string, t string, flipCost int, swapCost int, crossCost int) int64 { var diff [2]int64 n := len(s) for i := 0; i < n; i++ { if s[i] != t[i] { diff[s[i]-'0']++ } } ans := (diff[0] + diff[1]) * int64(flipCost) mx := max(diff[0], diff[1]) mn := min(diff[0], diff[1]) ans = min(ans, mn*int64(swapCost)+(mx-mn)*int64(flipCost)) avg := (mx + mn) / 2 ans = min(ans, (avg-mn)*int64(crossCost)+avg*int64(swapCost)+(mx+mn-avg*2)*int64(flipCost)) return ans } -
function minimumCost( s: string, t: string, flipCost: number, swapCost: number, crossCost: number, ): number { const diff: number[] = [0, 0]; const n = s.length; for (let i = 0; i < n; i++) { if (s[i] !== t[i]) { diff[s.charCodeAt(i) - 48]++; } } let ans = (diff[0] + diff[1]) * flipCost; const mx = Math.max(diff[0], diff[1]); const mn = Math.min(diff[0], diff[1]); ans = Math.min(ans, mn * swapCost + (mx - mn) * flipCost); const avg = (mx + mn) >> 1; ans = Math.min(ans, (avg - mn) * crossCost + avg * swapCost + (mx + mn - avg * 2) * flipCost); return ans; }