Welcome to Subscribe On Youtube

3504. Longest Palindrome After Substring Concatenation II

Description

You are given two strings, s and t.

You can create a new string by selecting a substring from s (possibly empty) and a substring from t (possibly empty), then concatenating them in order.

Return the length of the longest palindrome that can be formed this way.

 

Example 1:

Input: s = "a", t = "a"

Output: 2

Explanation:

Concatenating "a" from s and "a" from t results in "aa", which is a palindrome of length 2.

Example 2:

Input: s = "abc", t = "def"

Output: 1

Explanation:

Since all characters are different, the longest palindrome is any single character, so the answer is 1.

Example 3:

Input: s = "b", t = "aaaa"

Output: 4

Explanation:

Selecting "aaaa" from t is the longest palindrome, so the answer is 4.

Example 4:

Input: s = "abcde", t = "ecdba"

Output: 5

Explanation:

Concatenating "abc" from s and "ba" from t results in "abcba", which is a palindrome of length 5.

 

Constraints:

  • 1 <= s.length, t.length <= 1000
  • s and t consist of lowercase English letters.

Solutions

Solution 1: Enumerate Palindrome Centers + Dynamic Programming

According to the problem description, the concatenated palindrome string can be composed entirely of string $s$, entirely of string $t$, or a combination of both strings $s$ and $t$. Additionally, there may be extra palindromic substrings in either string $s$ or $t$.

Therefore, we first reverse string $t$ and preprocess arrays $\textit{g1}$ and $\textit{g2}$, where $\textit{g1}[i]$ represents the length of the longest palindromic substring starting at index $i$ in string $s$, and $\textit{g2}[i]$ represents the length of the longest palindromic substring starting at index $i$ in string $t$.

We can initialize the answer $\textit{ans}$ as the maximum value in $\textit{g1}$ and $\textit{g2}$.

Next, we define $\textit{f}[i][j]$ as the length of the palindromic substring ending at the $i$-th character of string $s$ and the $j$-th character of string $t$.

For $\textit{f}[i][j]$, if $s[i - 1]$ equals $t[j - 1]$, then $\textit{f}[i][j] = \textit{f}[i - 1][j - 1] + 1$. We then update the answer:

\[\textit{ans} = \max(\textit{ans}, \textit{f}[i][j] \times 2 + (0 \text{ if } i \geq m \text{ else } \textit{g1}[i])) \\ \textit{ans} = \max(\textit{ans}, \textit{f}[i][j] \times 2 + (0 \text{ if } j \geq n \text{ else } \textit{g2}[j]))\]

Finally, we return the answer $\textit{ans}$.

The time complexity is $O(m \times (m + n))$, and the space complexity is $O(m \times n)$, where $m$ and $n$ are the lengths of strings $s$ and $t$, respectively.

  • class Solution {
        public int longestPalindrome(String S, String T) {
            char[] s = S.toCharArray();
            char[] t = new StringBuilder(T).reverse().toString().toCharArray();
            int m = s.length, n = t.length;
            int[] g1 = calc(s), g2 = calc(t);
            int ans = Math.max(Arrays.stream(g1).max().getAsInt(), Arrays.stream(g2).max().getAsInt());
            int[][] f = new int[m + 1][n + 1];
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (s[i - 1] == t[j - 1]) {
                        f[i][j] = f[i - 1][j - 1] + 1;
                        ans = Math.max(ans, f[i][j] * 2 + (i < m ? g1[i] : 0));
                        ans = Math.max(ans, f[i][j] * 2 + (j < n ? g2[j] : 0));
                    }
                }
            }
            return ans;
        }
    
        private void expand(char[] s, int[] g, int l, int r) {
            while (l >= 0 && r < s.length && s[l] == s[r]) {
                g[l] = Math.max(g[l], r - l + 1);
                --l;
                ++r;
            }
        }
    
        private int[] calc(char[] s) {
            int n = s.length;
            int[] g = new int[n];
            for (int i = 0; i < n; ++i) {
                expand(s, g, i, i);
                expand(s, g, i, i + 1);
            }
            return g;
        }
    }
    
  • class Solution {
    public:
        int longestPalindrome(string s, string t) {
            int m = s.size(), n = t.size();
            ranges::reverse(t);
            vector<int> g1 = calc(s), g2 = calc(t);
            int ans = max(ranges::max(g1), ranges::max(g2));
            vector<vector<int>> f(m + 1, vector<int>(n + 1));
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (s[i - 1] == t[j - 1]) {
                        f[i][j] = f[i - 1][j - 1] + 1;
                        ans = max(ans, f[i][j] * 2 + (i < m ? g1[i] : 0));
                        ans = max(ans, f[i][j] * 2 + (j < n ? g2[j] : 0));
                    }
                }
            }
            return ans;
        }
    
    private:
        void expand(const string& s, vector<int>& g, int l, int r) {
            while (l >= 0 && r < s.size() && s[l] == s[r]) {
                g[l] = max(g[l], r - l + 1);
                --l;
                ++r;
            }
        }
    
        vector<int> calc(const string& s) {
            int n = s.size();
            vector<int> g(n, 0);
            for (int i = 0; i < n; ++i) {
                expand(s, g, i, i);
                expand(s, g, i, i + 1);
            }
            return g;
        }
    };
    
    
  • class Solution:
        def longestPalindrome(self, s: str, t: str) -> int:
            def expand(s: str, g: List[int], l: int, r: int):
                while l >= 0 and r < len(s) and s[l] == s[r]:
                    g[l] = max(g[l], r - l + 1)
                    l, r = l - 1, r + 1
    
            def calc(s: str) -> List[int]:
                n = len(s)
                g = [0] * n
                for i in range(n):
                    expand(s, g, i, i)
                    expand(s, g, i, i + 1)
                return g
    
            m, n = len(s), len(t)
            t = t[::-1]
            g1, g2 = calc(s), calc(t)
            ans = max(*g1, *g2)
            f = [[0] * (n + 1) for _ in range(m + 1)]
            for i, a in enumerate(s, 1):
                for j, b in enumerate(t, 1):
                    if a == b:
                        f[i][j] = f[i - 1][j - 1] + 1
                        ans = max(ans, f[i][j] * 2 + (0 if i >= m else g1[i]))
                        ans = max(ans, f[i][j] * 2 + (0 if j >= n else g2[j]))
            return ans
    
    
  • func longestPalindrome(s, t string) int {
    	m, n := len(s), len(t)
    	t = reverse(t)
    
    	g1, g2 := calc(s), calc(t)
    	ans := max(slices.Max(g1), slices.Max(g2))
    
    	f := make([][]int, m+1)
    	for i := range f {
    		f[i] = make([]int, n+1)
    	}
    
    	for i := 1; i <= m; i++ {
    		for j := 1; j <= n; j++ {
    			if s[i-1] == t[j-1] {
    				f[i][j] = f[i-1][j-1] + 1
    				a, b := 0, 0
    				if i < m {
    					a = g1[i]
    				}
    				if j < n {
    					b = g2[j]
    				}
    				ans = max(ans, f[i][j]*2+a)
    				ans = max(ans, f[i][j]*2+b)
    			}
    		}
    	}
    	return ans
    }
    
    func calc(s string) []int {
    	n, g := len(s), make([]int, len(s))
    	for i := 0; i < n; i++ {
    		expand(s, g, i, i)
    		expand(s, g, i, i+1)
    	}
    	return g
    }
    
    func expand(s string, g []int, l, r int) {
    	for l >= 0 && r < len(s) && s[l] == s[r] {
    		g[l] = max(g[l], r-l+1)
    		l, r = l-1, r+1
    	}
    }
    
    func reverse(s string) string {
    	r := []rune(s)
    	slices.Reverse(r)
    	return string(r)
    }
    
  • function longestPalindrome(s: string, t: string): number {
        function expand(s: string, g: number[], l: number, r: number): void {
            while (l >= 0 && r < s.length && s[l] === s[r]) {
                g[l] = Math.max(g[l], r - l + 1);
                l--;
                r++;
            }
        }
    
        function calc(s: string): number[] {
            const n = s.length;
            const g: number[] = Array(n).fill(0);
            for (let i = 0; i < n; i++) {
                expand(s, g, i, i);
                expand(s, g, i, i + 1);
            }
            return g;
        }
    
        const m = s.length,
            n = t.length;
        t = t.split('').reverse().join('');
        const g1 = calc(s);
        const g2 = calc(t);
        let ans = Math.max(...g1, ...g2);
    
        const f: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    
        for (let i = 1; i <= m; i++) {
            for (let j = 1; j <= n; j++) {
                if (s[i - 1] === t[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                    ans = Math.max(ans, f[i][j] * 2 + (i >= m ? 0 : g1[i]));
                    ans = Math.max(ans, f[i][j] * 2 + (j >= n ? 0 : g2[j]));
                }
            }
        }
    
        return ans;
    }
    
    

All Problems

All Solutions