Welcome to Subscribe On Youtube
3503. Longest Palindrome After Substring Concatenation I
Description
You are given two strings, s
and t
.
You can create a new string by selecting a substring from s
(possibly empty) and a substring from t
(possibly empty), then concatenating them in order.
Return the length of the longest palindrome that can be formed this way.
Example 1:
Input: s = "a", t = "a"
Output: 2
Explanation:
Concatenating "a"
from s
and "a"
from t
results in "aa"
, which is a palindrome of length 2.
Example 2:
Input: s = "abc", t = "def"
Output: 1
Explanation:
Since all characters are different, the longest palindrome is any single character, so the answer is 1.
Example 3:
Input: s = "b", t = "aaaa"
Output: 4
Explanation:
Selecting "aaaa
" from t
is the longest palindrome, so the answer is 4.
Example 4:
Input: s = "abcde", t = "ecdba"
Output: 5
Explanation:
Concatenating "abc"
from s
and "ba"
from t
results in "abcba"
, which is a palindrome of length 5.
Constraints:
1 <= s.length, t.length <= 30
s
andt
consist of lowercase English letters.
Solutions
Solution 1: Enumerate Palindrome Centers + Dynamic Programming
According to the problem description, the concatenated palindrome string can be composed entirely of string $s$, entirely of string $t$, or a combination of both strings $s$ and $t$. Additionally, there may be extra palindromic substrings in either string $s$ or $t$.
Therefore, we first reverse string $t$ and preprocess arrays $\textit{g1}$ and $\textit{g2}$, where $\textit{g1}[i]$ represents the length of the longest palindromic substring starting at index $i$ in string $s$, and $\textit{g2}[i]$ represents the length of the longest palindromic substring starting at index $i$ in string $t$.
We can initialize the answer $\textit{ans}$ as the maximum value in $\textit{g1}$ and $\textit{g2}$.
Next, we define $\textit{f}[i][j]$ as the length of the palindromic substring ending at the $i$-th character of string $s$ and the $j$-th character of string $t$.
For $\textit{f}[i][j]$, if $s[i - 1]$ equals $t[j - 1]$, then $\textit{f}[i][j] = \textit{f}[i - 1][j - 1] + 1$. We then update the answer:
\[\textit{ans} = \max(\textit{ans}, \textit{f}[i][j] \times 2 + (0 \text{ if } i \geq m \text{ else } \textit{g1}[i])) \\ \textit{ans} = \max(\textit{ans}, \textit{f}[i][j] \times 2 + (0 \text{ if } j \geq n \text{ else } \textit{g2}[j]))\]Finally, we return the answer $\textit{ans}$.
The time complexity is $O(m \times (m + n))$, and the space complexity is $O(m \times n)$, where $m$ and $n$ are the lengths of strings $s$ and $t$, respectively.
-
class Solution { public int longestPalindrome(String S, String T) { char[] s = S.toCharArray(); char[] t = new StringBuilder(T).reverse().toString().toCharArray(); int m = s.length, n = t.length; int[] g1 = calc(s), g2 = calc(t); int ans = Math.max(Arrays.stream(g1).max().getAsInt(), Arrays.stream(g2).max().getAsInt()); int[][] f = new int[m + 1][n + 1]; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s[i - 1] == t[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; ans = Math.max(ans, f[i][j] * 2 + (i < m ? g1[i] : 0)); ans = Math.max(ans, f[i][j] * 2 + (j < n ? g2[j] : 0)); } } } return ans; } private void expand(char[] s, int[] g, int l, int r) { while (l >= 0 && r < s.length && s[l] == s[r]) { g[l] = Math.max(g[l], r - l + 1); --l; ++r; } } private int[] calc(char[] s) { int n = s.length; int[] g = new int[n]; for (int i = 0; i < n; ++i) { expand(s, g, i, i); expand(s, g, i, i + 1); } return g; } }
-
class Solution { public: int longestPalindrome(string s, string t) { int m = s.size(), n = t.size(); ranges::reverse(t); vector<int> g1 = calc(s), g2 = calc(t); int ans = max(ranges::max(g1), ranges::max(g2)); vector<vector<int>> f(m + 1, vector<int>(n + 1)); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s[i - 1] == t[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; ans = max(ans, f[i][j] * 2 + (i < m ? g1[i] : 0)); ans = max(ans, f[i][j] * 2 + (j < n ? g2[j] : 0)); } } } return ans; } private: void expand(const string& s, vector<int>& g, int l, int r) { while (l >= 0 && r < s.size() && s[l] == s[r]) { g[l] = max(g[l], r - l + 1); --l; ++r; } } vector<int> calc(const string& s) { int n = s.size(); vector<int> g(n, 0); for (int i = 0; i < n; ++i) { expand(s, g, i, i); expand(s, g, i, i + 1); } return g; } };
-
class Solution: def longestPalindrome(self, s: str, t: str) -> int: def expand(s: str, g: List[int], l: int, r: int): while l >= 0 and r < len(s) and s[l] == s[r]: g[l] = max(g[l], r - l + 1) l, r = l - 1, r + 1 def calc(s: str) -> List[int]: n = len(s) g = [0] * n for i in range(n): expand(s, g, i, i) expand(s, g, i, i + 1) return g m, n = len(s), len(t) t = t[::-1] g1, g2 = calc(s), calc(t) ans = max(*g1, *g2) f = [[0] * (n + 1) for _ in range(m + 1)] for i, a in enumerate(s, 1): for j, b in enumerate(t, 1): if a == b: f[i][j] = f[i - 1][j - 1] + 1 ans = max(ans, f[i][j] * 2 + (0 if i >= m else g1[i])) ans = max(ans, f[i][j] * 2 + (0 if j >= n else g2[j])) return ans
-
func longestPalindrome(s, t string) int { m, n := len(s), len(t) t = reverse(t) g1, g2 := calc(s), calc(t) ans := max(slices.Max(g1), slices.Max(g2)) f := make([][]int, m+1) for i := range f { f[i] = make([]int, n+1) } for i := 1; i <= m; i++ { for j := 1; j <= n; j++ { if s[i-1] == t[j-1] { f[i][j] = f[i-1][j-1] + 1 a, b := 0, 0 if i < m { a = g1[i] } if j < n { b = g2[j] } ans = max(ans, f[i][j]*2+a) ans = max(ans, f[i][j]*2+b) } } } return ans } func calc(s string) []int { n, g := len(s), make([]int, len(s)) for i := 0; i < n; i++ { expand(s, g, i, i) expand(s, g, i, i+1) } return g } func expand(s string, g []int, l, r int) { for l >= 0 && r < len(s) && s[l] == s[r] { g[l] = max(g[l], r-l+1) l, r = l-1, r+1 } } func reverse(s string) string { r := []rune(s) slices.Reverse(r) return string(r) }
-
function longestPalindrome(s: string, t: string): number { function expand(s: string, g: number[], l: number, r: number): void { while (l >= 0 && r < s.length && s[l] === s[r]) { g[l] = Math.max(g[l], r - l + 1); l--; r++; } } function calc(s: string): number[] { const n = s.length; const g: number[] = Array(n).fill(0); for (let i = 0; i < n; i++) { expand(s, g, i, i); expand(s, g, i, i + 1); } return g; } const m = s.length, n = t.length; t = t.split('').reverse().join(''); const g1 = calc(s); const g2 = calc(t); let ans = Math.max(...g1, ...g2); const f: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0)); for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (s[i - 1] === t[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; ans = Math.max(ans, f[i][j] * 2 + (i >= m ? 0 : g1[i])); ans = Math.max(ans, f[i][j] * 2 + (j >= n ? 0 : g2[j])); } } } return ans; }