Welcome to Subscribe On Youtube

3291. Minimum Number of Valid Strings to Form Target I

Description

You are given an array of strings words and a string target.

A string x is called valid if x is a prefix of any string in words.

Return the minimum number of valid strings that can be concatenated to form target. If it is not possible to form target, return -1.

 

Example 1:

Input: words = ["abc","aaaaa","bcdef"], target = "aabcdabc"

Output: 3

Explanation:

The target string can be formed by concatenating:

  • Prefix of length 2 of words[1], i.e. "aa".
  • Prefix of length 3 of words[2], i.e. "bcd".
  • Prefix of length 3 of words[0], i.e. "abc".

Example 2:

Input: words = ["abababab","ab"], target = "ababaababa"

Output: 2

Explanation:

The target string can be formed by concatenating:

  • Prefix of length 5 of words[0], i.e. "ababa".
  • Prefix of length 5 of words[0], i.e. "ababa".

Example 3:

Input: words = ["abcdef"], target = "xyz"

Output: -1

 

Constraints:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 5 * 103
  • The input is generated such that sum(words[i].length) <= 105.
  • words[i] consists only of lowercase English letters.
  • 1 <= target.length <= 5 * 103
  • target consists only of lowercase English letters.

Solutions

Solution 1: Trie + Memoization

We can use a trie to store all valid strings and then use memoization to calculate the answer.

We design a function $\textit{dfs}(i)$, which represents the minimum number of strings needed to concatenate starting from the $i$-th character of the string $\textit{target}$. The answer is $\textit{dfs}(0)$.

The function $\textit{dfs}(i)$ is calculated as follows:

  • If $i \geq n$, it means the string $\textit{target}$ has been completely traversed, so we return $0$;
  • Otherwise, we can find valid strings in the trie that start with $\textit{target}[i]$, and then recursively calculate $\textit{dfs}(i + \text{len}(w))$, where $w$ is the valid string found. We take the minimum of these values and add $1$ as the return value of $\textit{dfs}(i)$.

To avoid redundant calculations, we use memoization.

The time complexity is $O(n^2 + L)$, and the space complexity is $O(n + L)$. Here, $n$ is the length of the string $\textit{target}$, and $L$ is the total length of all valid strings.

  • class Trie {
        Trie[] children = new Trie[26];
    
        void insert(String w) {
            Trie node = this;
            for (int i = 0; i < w.length(); ++i) {
                int j = w.charAt(i) - 'a';
                if (node.children[j] == null) {
                    node.children[j] = new Trie();
                }
                node = node.children[j];
            }
        }
    }
    
    class Solution {
        private Integer[] f;
        private char[] s;
        private Trie trie;
        private final int inf = 1 << 30;
    
        public int minValidStrings(String[] words, String target) {
            trie = new Trie();
            for (String w : words) {
                trie.insert(w);
            }
            s = target.toCharArray();
            f = new Integer[s.length];
            int ans = dfs(0);
            return ans < inf ? ans : -1;
        }
    
        private int dfs(int i) {
            if (i >= s.length) {
                return 0;
            }
            if (f[i] != null) {
                return f[i];
            }
            Trie node = trie;
            f[i] = inf;
            for (int j = i; j < s.length; ++j) {
                int k = s[j] - 'a';
                if (node.children[k] == null) {
                    break;
                }
                f[i] = Math.min(f[i], 1 + dfs(j + 1));
                node = node.children[k];
            }
            return f[i];
        }
    }
    
    
  • class Trie {
    public:
        Trie* children[26]{};
    
        void insert(string& word) {
            Trie* node = this;
            for (char& c : word) {
                int i = c - 'a';
                if (!node->children[i]) {
                    node->children[i] = new Trie();
                }
                node = node->children[i];
            }
        }
    };
    
    class Solution {
    public:
        int minValidStrings(vector<string>& words, string target) {
            int n = target.size();
            Trie* trie = new Trie();
            for (auto& w : words) {
                trie->insert(w);
            }
            const int inf = 1 << 30;
            int f[n];
            memset(f, -1, sizeof(f));
            auto dfs = [&](auto&& dfs, int i) -> int {
                if (i >= n) {
                    return 0;
                }
                if (f[i] != -1) {
                    return f[i];
                }
                f[i] = inf;
                Trie* node = trie;
                for (int j = i; j < n; ++j) {
                    int k = target[j] - 'a';
                    if (!node->children[k]) {
                        break;
                    }
                    node = node->children[k];
                    f[i] = min(f[i], 1 + dfs(dfs, j + 1));
                }
                return f[i];
            };
            int ans = dfs(dfs, 0);
            return ans < inf ? ans : -1;
        }
    };
    
    
  • def min(a: int, b: int) -> int:
        return a if a < b else b
    
    
    class Trie:
        def __init__(self):
            self.children: List[Optional[Trie]] = [None] * 26
    
        def insert(self, w: str):
            node = self
            for i in map(lambda c: ord(c) - 97, w):
                if node.children[i] is None:
                    node.children[i] = Trie()
                node = node.children[i]
    
    
    class Solution:
        def minValidStrings(self, words: List[str], target: str) -> int:
            @cache
            def dfs(i: int) -> int:
                if i >= n:
                    return 0
                node = trie
                ans = inf
                for j in range(i, n):
                    k = ord(target[j]) - 97
                    if node.children[k] is None:
                        break
                    node = node.children[k]
                    ans = min(ans, 1 + dfs(j + 1))
                return ans
    
            trie = Trie()
            for w in words:
                trie.insert(w)
            n = len(target)
            ans = dfs(0)
            return ans if ans < inf else -1
    
    
  • type Trie struct {
    	children [26]*Trie
    }
    
    func (t *Trie) insert(word string) {
    	node := t
    	for _, c := range word {
    		idx := c - 'a'
    		if node.children[idx] == nil {
    			node.children[idx] = &Trie{}
    		}
    		node = node.children[idx]
    	}
    }
    
    func minValidStrings(words []string, target string) int {
    	n := len(target)
    	trie := &Trie{}
    	for _, w := range words {
    		trie.insert(w)
    	}
    	const inf int = 1 << 30
    	f := make([]int, n)
    	var dfs func(int) int
    	dfs = func(i int) int {
    		if i >= n {
    			return 0
    		}
    		if f[i] != 0 {
    			return f[i]
    		}
    		node := trie
    		f[i] = inf
    		for j := i; j < n; j++ {
    			k := int(target[j] - 'a')
    			if node.children[k] == nil {
    				break
    			}
    			f[i] = min(f[i], 1+dfs(j+1))
    			node = node.children[k]
    		}
    		return f[i]
    	}
    	if ans := dfs(0); ans < inf {
    		return ans
    	}
    	return -1
    }
    
    
  • class Trie {
        children: (Trie | null)[] = Array(26).fill(null);
    
        insert(word: string): void {
            let node: Trie = this;
            for (const c of word) {
                const i = c.charCodeAt(0) - 'a'.charCodeAt(0);
                if (!node.children[i]) {
                    node.children[i] = new Trie();
                }
                node = node.children[i];
            }
        }
    }
    
    function minValidStrings(words: string[], target: string): number {
        const n = target.length;
        const trie = new Trie();
        for (const w of words) {
            trie.insert(w);
        }
        const inf = 1 << 30;
        const f = Array(n).fill(0);
    
        const dfs = (i: number): number => {
            if (i >= n) {
                return 0;
            }
            if (f[i]) {
                return f[i];
            }
            f[i] = inf;
            let node: Trie | null = trie;
            for (let j = i; j < n; ++j) {
                const k = target[j].charCodeAt(0) - 'a'.charCodeAt(0);
                if (!node?.children[k]) {
                    break;
                }
                node = node.children[k];
                f[i] = Math.min(f[i], 1 + dfs(j + 1));
            }
            return f[i];
        };
    
        const ans = dfs(0);
        return ans < inf ? ans : -1;
    }
    
    

All Problems

All Solutions