Welcome to Subscribe On Youtube
3165. Maximum Sum of Subsequence With Non-adjacent Elements
Description
You are given an array nums
consisting of integers. You are also given a 2D array queries
, where queries[i] = [posi, xi]
.
For query i
, we first set nums[posi]
equal to xi
, then we calculate the answer to query i
which is the maximum sum of a subsequence of nums
where no two adjacent elements are selected.
Return the sum of the answers to all queries.
Since the final answer may be very large, return it modulo 109 + 7
.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [3,5,9], queries = [[1,-2],[0,-3]]
Output: 21
Explanation:
After the 1st query, nums = [3,-2,9]
and the maximum sum of a subsequence with non-adjacent elements is 3 + 9 = 12
.
After the 2nd query, nums = [-3,-2,9]
and the maximum sum of a subsequence with non-adjacent elements is 9.
Example 2:
Input: nums = [0,-1], queries = [[0,-5]]
Output: 0
Explanation:
After the 1st query, nums = [-5,-1]
and the maximum sum of a subsequence with non-adjacent elements is 0 (choosing an empty subsequence).
Constraints:
1 <= nums.length <= 5 * 104
-105 <= nums[i] <= 105
1 <= queries.length <= 5 * 104
queries[i] == [posi, xi]
0 <= posi <= nums.length - 1
-105 <= xi <= 105
Solutions
Solution 1
-
class Node { int l, r; long s00, s01, s10, s11; Node(int l, int r) { this.l = l; this.r = r; this.s00 = this.s01 = this.s10 = this.s11 = 0; } } class SegmentTree { Node[] tr; SegmentTree(int n) { tr = new Node[n * 4]; build(1, 1, n); } void build(int u, int l, int r) { tr[u] = new Node(l, r); if (l == r) { return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } long query(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { return tr[u].s11; } int mid = (tr[u].l + tr[u].r) >> 1; long ans = 0; if (r <= mid) { ans = query(u << 1, l, r); } if (l > mid) { ans = Math.max(ans, query(u << 1 | 1, l, r)); } return ans; } void pushup(int u) { Node left = tr[u << 1]; Node right = tr[u << 1 | 1]; tr[u].s00 = Math.max(left.s00 + right.s10, left.s01 + right.s00); tr[u].s01 = Math.max(left.s00 + right.s11, left.s01 + right.s01); tr[u].s10 = Math.max(left.s10 + right.s10, left.s11 + right.s00); tr[u].s11 = Math.max(left.s10 + right.s11, left.s11 + right.s01); } void modify(int u, int x, int v) { if (tr[u].l == tr[u].r) { tr[u].s11 = Math.max(0, v); return; } int mid = (tr[u].l + tr[u].r) >> 1; if (x <= mid) { modify(u << 1, x, v); } else { modify(u << 1 | 1, x, v); } pushup(u); } } class Solution { public int maximumSumSubsequence(int[] nums, int[][] queries) { int n = nums.length; SegmentTree tree = new SegmentTree(n); for (int i = 0; i < n; ++i) { tree.modify(1, i + 1, nums[i]); } long ans = 0; final int mod = (int) 1e9 + 7; for (int[] q : queries) { tree.modify(1, q[0] + 1, q[1]); ans = (ans + tree.query(1, 1, n)) % mod; } return (int) ans; } }
-
class Node { public: int l, r; long long s00, s01, s10, s11; Node(int l, int r) : l(l) , r(r) , s00(0) , s01(0) , s10(0) , s11(0) {} }; class SegmentTree { public: vector<Node*> tr; SegmentTree(int n) : tr(n << 2) { build(1, 1, n); } void build(int u, int l, int r) { tr[u] = new Node(l, r); if (l == r) { return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } long long query(int u, int l, int r) { if (tr[u]->l >= l && tr[u]->r <= r) { return tr[u]->s11; } int mid = (tr[u]->l + tr[u]->r) >> 1; long long ans = 0; if (r <= mid) { ans = query(u << 1, l, r); } if (l > mid) { ans = max(ans, query(u << 1 | 1, l, r)); } return ans; } void pushup(int u) { Node* left = tr[u << 1]; Node* right = tr[u << 1 | 1]; tr[u]->s00 = max(left->s00 + right->s10, left->s01 + right->s00); tr[u]->s01 = max(left->s00 + right->s11, left->s01 + right->s01); tr[u]->s10 = max(left->s10 + right->s10, left->s11 + right->s00); tr[u]->s11 = max(left->s10 + right->s11, left->s11 + right->s01); } void modify(int u, int x, int v) { if (tr[u]->l == tr[u]->r) { tr[u]->s11 = max(0LL, (long long) v); return; } int mid = (tr[u]->l + tr[u]->r) >> 1; if (x <= mid) { modify(u << 1, x, v); } else { modify(u << 1 | 1, x, v); } pushup(u); } ~SegmentTree() { for (auto node : tr) { delete node; } } }; class Solution { public: int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& queries) { int n = nums.size(); SegmentTree tree(n); for (int i = 0; i < n; ++i) { tree.modify(1, i + 1, nums[i]); } long long ans = 0; const int mod = 1e9 + 7; for (const auto& q : queries) { tree.modify(1, q[0] + 1, q[1]); ans = (ans + tree.query(1, 1, n)) % mod; } return (int) ans; } };
-
def max(a: int, b: int) -> int: return a if a > b else b class Node: __slots__ = "l", "r", "s00", "s01", "s10", "s11" def __init__(self, l: int, r: int): self.l = l self.r = r self.s00 = self.s01 = self.s10 = self.s11 = 0 class SegmentTree: __slots__ = "tr" def __init__(self, n: int): self.tr: List[Node | None] = [None] * (n << 2) self.build(1, 1, n) def build(self, u: int, l: int, r: int): self.tr[u] = Node(l, r) if l == r: return mid = (l + r) >> 1 self.build(u << 1, l, mid) self.build(u << 1 | 1, mid + 1, r) def query(self, u: int, l: int, r: int) -> int: if self.tr[u].l >= l and self.tr[u].r <= r: return self.tr[u].s11 mid = (self.tr[u].l + self.tr[u].r) >> 1 ans = 0 if r <= mid: ans = self.query(u << 1, l, r) if l > mid: ans = max(ans, self.query(u << 1 | 1, l, r)) return ans def pushup(self, u: int): left, right = self.tr[u << 1], self.tr[u << 1 | 1] self.tr[u].s00 = max(left.s00 + right.s10, left.s01 + right.s00) self.tr[u].s01 = max(left.s00 + right.s11, left.s01 + right.s01) self.tr[u].s10 = max(left.s10 + right.s10, left.s11 + right.s00) self.tr[u].s11 = max(left.s10 + right.s11, left.s11 + right.s01) def modify(self, u: int, x: int, v: int): if self.tr[u].l == self.tr[u].r: self.tr[u].s11 = max(0, v) return mid = (self.tr[u].l + self.tr[u].r) >> 1 if x <= mid: self.modify(u << 1, x, v) else: self.modify(u << 1 | 1, x, v) self.pushup(u) class Solution: def maximumSumSubsequence(self, nums: List[int], queries: List[List[int]]) -> int: n = len(nums) tree = SegmentTree(n) for i, x in enumerate(nums, 1): tree.modify(1, i, x) ans = 0 mod = 10**9 + 7 for i, x in queries: tree.modify(1, i + 1, x) ans = (ans + tree.query(1, 1, n)) % mod return ans
-
type Node struct { l, r int s00, s01, s10, s11 int } func NewNode(l, r int) *Node { return &Node{l: l, r: r, s00: 0, s01: 0, s10: 0, s11: 0} } type SegmentTree struct { tr []*Node } func NewSegmentTree(n int) *SegmentTree { tr := make([]*Node, n*4) tree := &SegmentTree{tr: tr} tree.build(1, 1, n) return tree } func (st *SegmentTree) build(u, l, r int) { st.tr[u] = NewNode(l, r) if l == r { return } mid := (l + r) >> 1 st.build(u<<1, l, mid) st.build(u<<1|1, mid+1, r) } func (st *SegmentTree) query(u, l, r int) int { if st.tr[u].l >= l && st.tr[u].r <= r { return st.tr[u].s11 } mid := (st.tr[u].l + st.tr[u].r) >> 1 ans := 0 if r <= mid { ans = st.query(u<<1, l, r) } if l > mid { ans = max(ans, st.query(u<<1|1, l, r)) } return ans } func (st *SegmentTree) pushup(u int) { left := st.tr[u<<1] right := st.tr[u<<1|1] st.tr[u].s00 = max(left.s00+right.s10, left.s01+right.s00) st.tr[u].s01 = max(left.s00+right.s11, left.s01+right.s01) st.tr[u].s10 = max(left.s10+right.s10, left.s11+right.s00) st.tr[u].s11 = max(left.s10+right.s11, left.s11+right.s01) } func (st *SegmentTree) modify(u, x, v int) { if st.tr[u].l == st.tr[u].r { st.tr[u].s11 = max(0, v) return } mid := (st.tr[u].l + st.tr[u].r) >> 1 if x <= mid { st.modify(u<<1, x, v) } else { st.modify(u<<1|1, x, v) } st.pushup(u) } func maximumSumSubsequence(nums []int, queries [][]int) (ans int) { n := len(nums) tree := NewSegmentTree(n) for i, x := range nums { tree.modify(1, i+1, x) } const mod int = 1e9 + 7 for _, q := range queries { tree.modify(1, q[0]+1, q[1]) ans = (ans + tree.query(1, 1, n)) % mod } return }
-
class Node { s00 = 0; s01 = 0; s10 = 0; s11 = 0; constructor( public l: number, public r: number, ) {} } class SegmentTree { tr: Node[]; constructor(n: number) { this.tr = Array(n * 4); this.build(1, 1, n); } build(u: number, l: number, r: number) { this.tr[u] = new Node(l, r); if (l === r) { return; } const mid = (l + r) >> 1; this.build(u << 1, l, mid); this.build((u << 1) | 1, mid + 1, r); } query(u: number, l: number, r: number): number { if (this.tr[u].l >= l && this.tr[u].r <= r) { return this.tr[u].s11; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; let ans = 0; if (r <= mid) { ans = this.query(u << 1, l, r); } if (l > mid) { ans = Math.max(ans, this.query((u << 1) | 1, l, r)); } return ans; } pushup(u: number) { const left = this.tr[u << 1]; const right = this.tr[(u << 1) | 1]; this.tr[u].s00 = Math.max(left.s00 + right.s10, left.s01 + right.s00); this.tr[u].s01 = Math.max(left.s00 + right.s11, left.s01 + right.s01); this.tr[u].s10 = Math.max(left.s10 + right.s10, left.s11 + right.s00); this.tr[u].s11 = Math.max(left.s10 + right.s11, left.s11 + right.s01); } modify(u: number, x: number, v: number) { if (this.tr[u].l === this.tr[u].r) { this.tr[u].s11 = Math.max(0, v); return; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; if (x <= mid) { this.modify(u << 1, x, v); } else { this.modify((u << 1) | 1, x, v); } this.pushup(u); } } function maximumSumSubsequence(nums: number[], queries: number[][]): number { const n = nums.length; const tree = new SegmentTree(n); for (let i = 0; i < n; i++) { tree.modify(1, i + 1, nums[i]); } let ans = 0; const mod = 1e9 + 7; for (const [i, x] of queries) { tree.modify(1, i + 1, x); ans = (ans + tree.query(1, 1, n)) % mod; } return ans; }