Welcome to Subscribe On Youtube
3164. Find the Number of Good Pairs II
Description
You are given 2 integer arrays nums1
and nums2
of lengths n
and m
respectively. You are also given a positive integer k
.
A pair (i, j)
is called good if nums1[i]
is divisible by nums2[j] * k
(0 <= i <= n - 1
, 0 <= j <= m - 1
).
Return the total number of good pairs.
Example 1:
Input: nums1 = [1,3,4], nums2 = [1,3,4], k = 1
Output: 5
Explanation:
The 5 good pairs are(0, 0)
, (1, 0)
, (1, 1)
, (2, 0)
, and (2, 2)
.Example 2:
Input: nums1 = [1,2,4,12], nums2 = [2,4], k = 3
Output: 2
Explanation:
The 2 good pairs are (3, 0)
and (3, 1)
.
Constraints:
1 <= n, m <= 105
1 <= nums1[i], nums2[j] <= 106
1 <= k <= 103
Solutions
Solution 1: Hash Table + Enumerate Multiples
We use a hash table cnt1
to record the occurrence times of each number divided by $k$ in array nums1
, and a hash table cnt2
to record the occurrence times of each number in array nums2
.
Next, we enumerate each number $x$ in array nums2
. For each number $x$, we enumerate its multiples $y$, where the range of $y$ is $[x, \text{mx}]$, where mx
is the maximum key value in cnt1
. Then we count the sum of cnt1[y]
, denoted as $s$. Finally, we add $s \times v$ to the answer, where $v$ is cnt2[x]
.
The time complexity is $O(n + m + (M / k) \times \log m)$, and the space complexity is $O(n + m)$. Where $n$ and $m$ are the lengths of arrays nums1
and nums2
respectively, and $M$ is the maximum value in array nums1
.
-
class Solution { public long numberOfPairs(int[] nums1, int[] nums2, int k) { Map<Integer, Integer> cnt1 = new HashMap<>(); for (int x : nums1) { if (x % k == 0) { cnt1.merge(x / k, 1, Integer::sum); } } if (cnt1.isEmpty()) { return 0; } Map<Integer, Integer> cnt2 = new HashMap<>(); for (int x : nums2) { cnt2.merge(x, 1, Integer::sum); } long ans = 0; int mx = Collections.max(cnt1.keySet()); for (var e : cnt2.entrySet()) { int x = e.getKey(), v = e.getValue(); int s = 0; for (int y = x; y <= mx; y += x) { s += cnt1.getOrDefault(y, 0); } ans += 1L * s * v; } return ans; } }
-
class Solution { public: long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int k) { unordered_map<int, int> cnt1; for (int x : nums1) { if (x % k == 0) { cnt1[x / k]++; } } if (cnt1.empty()) { return 0; } unordered_map<int, int> cnt2; for (int x : nums2) { ++cnt2[x]; } int mx = 0; for (auto& [x, _] : cnt1) { mx = max(mx, x); } long long ans = 0; for (auto& [x, v] : cnt2) { long long s = 0; for (int y = x; y <= mx; y += x) { s += cnt1[y]; } ans += s * v; } return ans; } };
-
class Solution: def numberOfPairs(self, nums1: List[int], nums2: List[int], k: int) -> int: cnt1 = Counter(x // k for x in nums1 if x % k == 0) if not cnt1: return 0 cnt2 = Counter(nums2) ans = 0 mx = max(cnt1) for x, v in cnt2.items(): s = sum(cnt1[y] for y in range(x, mx + 1, x)) ans += s * v return ans
-
func numberOfPairs(nums1 []int, nums2 []int, k int) (ans int64) { cnt1 := map[int]int{} for _, x := range nums1 { if x%k == 0 { cnt1[x/k]++ } } if len(cnt1) == 0 { return 0 } cnt2 := map[int]int{} for _, x := range nums2 { cnt2[x]++ } mx := 0 for x := range cnt1 { mx = max(mx, x) } for x, v := range cnt2 { s := 0 for y := x; y <= mx; y += x { s += cnt1[y] } ans += int64(s) * int64(v) } return }
-
function numberOfPairs(nums1: number[], nums2: number[], k: number): number { const cnt1: Map<number, number> = new Map(); for (const x of nums1) { if (x % k === 0) { cnt1.set((x / k) | 0, (cnt1.get((x / k) | 0) || 0) + 1); } } if (cnt1.size === 0) { return 0; } const cnt2: Map<number, number> = new Map(); for (const x of nums2) { cnt2.set(x, (cnt2.get(x) || 0) + 1); } const mx = Math.max(...cnt1.keys()); let ans = 0; for (const [x, v] of cnt2) { let s = 0; for (let y = x; y <= mx; y += x) { s += cnt1.get(y) || 0; } ans += s * v; } return ans; }