Welcome to Subscribe On Youtube

3099. Harshad Number

Description

An integer divisible by the sum of its digits is said to be a Harshad number. You are given an integer x. Return the sum of the digits of x if x is a Harshad number, otherwise, return -1.

 

Example 1:

Input: x = 18

Output: 9

Explanation:

The sum of digits of x is 9. 18 is divisible by 9. So 18 is a Harshad number and the answer is 9.

Example 2:

Input: x = 23

Output: -1

Explanation:

The sum of digits of x is 5. 23 is not divisible by 5. So 23 is not a Harshad number and the answer is -1.

 

Constraints:

  • 1 <= x <= 100

Solutions

Solution 1: Simulation

We can calculate the sum of the digits of $x$, denoted as $s$, by simulation. If $x$ can be divided evenly by $s$, then we return $s$, otherwise, we return $-1$.

The time complexity is $O(\log x)$, where $x$ is the input integer. The space complexity is $O(1)$.

  • class Solution {
        public int sumOfTheDigitsOfHarshadNumber(int x) {
            int s = 0;
            for (int y = x; y > 0; y /= 10) {
                s += y % 10;
            }
            return x % s == 0 ? s : -1;
        }
    }
    
  • class Solution {
    public:
        int sumOfTheDigitsOfHarshadNumber(int x) {
            int s = 0;
            for (int y = x; y > 0; y /= 10) {
                s += y % 10;
            }
            return x % s == 0 ? s : -1;
        }
    };
    
  • class Solution:
        def sumOfTheDigitsOfHarshadNumber(self, x: int) -> int:
            s, y = 0, x
            while y:
                s += y % 10
                y //= 10
            return s if x % s == 0 else -1
    
    
  • func sumOfTheDigitsOfHarshadNumber(x int) int {
    	s := 0
    	for y := x; y > 0; y /= 10 {
    		s += y % 10
    	}
    	if x%s == 0 {
    		return s
    	}
    	return -1
    }
    
  • function sumOfTheDigitsOfHarshadNumber(x: number): number {
        let s = 0;
        for (let y = x; y; y = Math.floor(y / 10)) {
            s += y % 10;
        }
        return x % s === 0 ? s : -1;
    }
    
    

All Problems

All Solutions