Welcome to Subscribe On Youtube
3026. Maximum Good Subarray Sum
Description
You are given an array nums
of length n
and a positive integer k
.
A subarray of nums
is called good if the absolute difference between its first and last element is exactly k
, in other words, the subarray nums[i..j]
is good if \|nums[i] - nums[j]\| == k
.
Return the maximum sum of a good subarray of nums
. If there are no good subarrays, return 0
.
Example 1:
Input: nums = [1,2,3,4,5,6], k = 1 Output: 11 Explanation: The absolute difference between the first and last element must be 1 for a good subarray. All the good subarrays are: [1,2], [2,3], [3,4], [4,5], and [5,6]. The maximum subarray sum is 11 for the subarray [5,6].
Example 2:
Input: nums = [-1,3,2,4,5], k = 3 Output: 11 Explanation: The absolute difference between the first and last element must be 3 for a good subarray. All the good subarrays are: [-1,3,2], and [2,4,5]. The maximum subarray sum is 11 for the subarray [2,4,5].
Example 3:
Input: nums = [-1,-2,-3,-4], k = 2 Output: -6 Explanation: The absolute difference between the first and last element must be 2 for a good subarray. All the good subarrays are: [-1,-2,-3], and [-2,-3,-4]. The maximum subarray sum is -6 for the subarray [-1,-2,-3].
Constraints:
2 <= nums.length <= 105
-109 <= nums[i] <= 109
1 <= k <= 109
Solutions
Solution 1: Prefix Sum + Hash Table
We use a hash table $p$ to record the sum $s$ of the prefix array $nums[0..i-1]$ for $nums[i]$. If there are multiple identical $nums[i]$, we only keep the smallest $s$. Initially, we set $p[nums[0]]$ to $0$. In addition, we use a variable $s$ to record the current prefix sum, initially $s = 0$. Initialize the answer $ans$ to $-\infty$.
Next, we enumerate $nums[i]$, and maintain a variable $s$ to represent the sum of $nums[0..i]$. If $nums[i] - k$ is in $p$, then we have found a good subarray, and update the answer to $ans = \max(ans, s - p[nums[i] - k])$. Similarly, if $nums[i] + k$ is in $p$, then we have also found a good subarray, and update the answer to $ans = \max(ans, s - p[nums[i] + k])$. Then, if $i + 1 \lt n$ and $nums[i + 1]$ is not in $p$, or $p[nums[i + 1]] \gt s$, we set $p[nums[i + 1]]$ to $s$.
Finally, if $ans = -\infty$, then we return $0$, otherwise return $ans$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
-
class Solution { public long maximumSubarraySum(int[] nums, int k) { Map<Integer, Long> p = new HashMap<>(); p.put(nums[0], 0L); long s = 0; int n = nums.length; long ans = Long.MIN_VALUE; for (int i = 0; i < n; ++i) { s += nums[i]; if (p.containsKey(nums[i] - k)) { ans = Math.max(ans, s - p.get(nums[i] - k)); } if (p.containsKey(nums[i] + k)) { ans = Math.max(ans, s - p.get(nums[i] + k)); } if (i + 1 < n && (!p.containsKey(nums[i + 1]) || p.get(nums[i + 1]) > s)) { p.put(nums[i + 1], s); } } return ans == Long.MIN_VALUE ? 0 : ans; } }
-
class Solution { public: long long maximumSubarraySum(vector<int>& nums, int k) { unordered_map<int, long long> p; p[nums[0]] = 0; long long s = 0; const int n = nums.size(); long long ans = LONG_LONG_MIN; for (int i = 0;; ++i) { s += nums[i]; auto it = p.find(nums[i] - k); if (it != p.end()) { ans = max(ans, s - it->second); } it = p.find(nums[i] + k); if (it != p.end()) { ans = max(ans, s - it->second); } if (i + 1 == n) { break; } it = p.find(nums[i + 1]); if (it == p.end() || it->second > s) { p[nums[i + 1]] = s; } } return ans == LONG_LONG_MIN ? 0 : ans; } };
-
class Solution: def maximumSubarraySum(self, nums: List[int], k: int) -> int: ans = -inf p = {nums[0]: 0} s, n = 0, len(nums) for i, x in enumerate(nums): s += x if x - k in p: ans = max(ans, s - p[x - k]) if x + k in p: ans = max(ans, s - p[x + k]) if i + 1 < n and (nums[i + 1] not in p or p[nums[i + 1]] > s): p[nums[i + 1]] = s return 0 if ans == -inf else ans
-
func maximumSubarraySum(nums []int, k int) int64 { p := map[int]int64{nums[0]: 0} var s int64 = 0 n := len(nums) var ans int64 = math.MinInt64 for i, x := range nums { s += int64(x) if t, ok := p[nums[i]-k]; ok { ans = max(ans, s-t) } if t, ok := p[nums[i]+k]; ok { ans = max(ans, s-t) } if i+1 == n { break } if t, ok := p[nums[i+1]]; !ok || s < t { p[nums[i+1]] = s } } if ans == math.MinInt64 { return 0 } return ans }
-
function maximumSubarraySum(nums: number[], k: number): number { const p: Map<number, number> = new Map(); p.set(nums[0], 0); let ans: number = -Infinity; let s: number = 0; const n: number = nums.length; for (let i = 0; i < n; ++i) { s += nums[i]; if (p.has(nums[i] - k)) { ans = Math.max(ans, s - p.get(nums[i] - k)!); } if (p.has(nums[i] + k)) { ans = Math.max(ans, s - p.get(nums[i] + k)!); } if (i + 1 < n && (!p.has(nums[i + 1]) || p.get(nums[i + 1])! > s)) { p.set(nums[i + 1], s); } } return ans === -Infinity ? 0 : ans; }
-
public class Solution { public long MaximumSubarraySum(int[] nums, int k) { Dictionary<int, long> p = new Dictionary<int, long>(); p[nums[0]] = 0L; long s = 0; int n = nums.Length; long ans = long.MinValue; for (int i = 0; i < n; ++i) { s += nums[i]; if (p.ContainsKey(nums[i] - k)) { ans = Math.Max(ans, s - p[nums[i] - k]); } if (p.ContainsKey(nums[i] + k)) { ans = Math.Max(ans, s - p[nums[i] + k]); } if (i + 1 < n && (!p.ContainsKey(nums[i + 1]) || p[nums[i + 1]] > s)) { p[nums[i + 1]] = s; } } return ans == long.MinValue ? 0 : ans; } }