Welcome to Subscribe On Youtube
2962. Count Subarrays Where Max Element Appears at Least K Times
Description
You are given an integer array nums
and a positive integer k
.
Return the number of subarrays where the maximum element of nums
appears at least k
times in that subarray.
A subarray is a contiguous sequence of elements within an array.
Example 1:
Input: nums = [1,3,2,3,3], k = 2 Output: 6 Explanation: The subarrays that contain the element 3 at least 2 times are: [1,3,2,3], [1,3,2,3,3], [3,2,3], [3,2,3,3], [2,3,3] and [3,3].
Example 2:
Input: nums = [1,4,2,1], k = 3 Output: 0 Explanation: No subarray contains the element 4 at least 3 times.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 106
1 <= k <= 105
Solutions
Solution 1: Two Pointers
Let’s denote the maximum value in the array as $mx$.
We use two pointers $i$ and $j$ to maintain a sliding window, such that in the subarray between $[i, j)$, there are $k$ elements equal to $mx$. If we fix the left endpoint $i$, then all right endpoints greater than or equal to $j-1$ meet the condition, totaling $n - (j - 1)$.
Therefore, we enumerate the left endpoint $i$, use the pointer $j$ to maintain the right endpoint, use a variable $cnt$ to record the number of elements equal to $mx$ in the current window. When $cnt$ is greater than or equal to $k$, we have found a subarray that meets the condition, and we increase the answer by $n - (j - 1)$. Then we update $cnt$ and continue to enumerate the next left endpoint.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
-
class Solution { public long countSubarrays(int[] nums, int k) { int mx = Arrays.stream(nums).max().getAsInt(); int n = nums.length; long ans = 0; int cnt = 0, j = 0; for (int x : nums) { while (j < n && cnt < k) { cnt += nums[j++] == mx ? 1 : 0; } if (cnt < k) { break; } ans += n - j + 1; cnt -= x == mx ? 1 : 0; } return ans; } }
-
class Solution { public: long long countSubarrays(vector<int>& nums, int k) { int mx = *max_element(nums.begin(), nums.end()); int n = nums.size(); long long ans = 0; int cnt = 0, j = 0; for (int x : nums) { while (j < n && cnt < k) { cnt += nums[j++] == mx; } if (cnt < k) { break; } ans += n - j + 1; cnt -= x == mx; } return ans; } };
-
class Solution: def countSubarrays(self, nums: List[int], k: int) -> int: mx = max(nums) n = len(nums) ans = cnt = j = 0 for x in nums: while j < n and cnt < k: cnt += nums[j] == mx j += 1 if cnt < k: break ans += n - j + 1 cnt -= x == mx return ans
-
func countSubarrays(nums []int, k int) (ans int64) { mx := slices.Max(nums) n := len(nums) cnt, j := 0, 0 for _, x := range nums { for ; j < n && cnt < k; j++ { if nums[j] == mx { cnt++ } } if cnt < k { break } ans += int64(n - j + 1) if x == mx { cnt-- } } return }
-
function countSubarrays(nums: number[], k: number): number { const mx = Math.max(...nums); const n = nums.length; let [cnt, j] = [0, 0]; let ans = 0; for (const x of nums) { for (; j < n && cnt < k; ++j) { cnt += nums[j] === mx ? 1 : 0; } if (cnt < k) { break; } ans += n - j + 1; cnt -= x === mx ? 1 : 0; } return ans; }