Welcome to Subscribe On Youtube
2808. Minimum Seconds to Equalize a Circular Array
Description
You are given a 0-indexed array nums
containing n
integers.
At each second, you perform the following operation on the array:
- For every index
i
in the range[0, n - 1]
, replacenums[i]
with eithernums[i]
,nums[(i - 1 + n) % n]
, ornums[(i + 1) % n]
.
Note that all the elements get replaced simultaneously.
Return the minimum number of seconds needed to make all elements in the array nums
equal.
Example 1:
Input: nums = [1,2,1,2] Output: 1 Explanation: We can equalize the array in 1 second in the following way: - At 1st second, replace values at each index with [nums[3],nums[1],nums[3],nums[3]]. After replacement, nums = [2,2,2,2]. It can be proven that 1 second is the minimum amount of seconds needed for equalizing the array.
Example 2:
Input: nums = [2,1,3,3,2] Output: 2 Explanation: We can equalize the array in 2 seconds in the following way: - At 1st second, replace values at each index with [nums[0],nums[2],nums[2],nums[2],nums[3]]. After replacement, nums = [2,3,3,3,3]. - At 2nd second, replace values at each index with [nums[1],nums[1],nums[2],nums[3],nums[4]]. After replacement, nums = [3,3,3,3,3]. It can be proven that 2 seconds is the minimum amount of seconds needed for equalizing the array.
Example 3:
Input: nums = [5,5,5,5] Output: 0 Explanation: We don't need to perform any operations as all elements in the initial array are the same.
Constraints:
1 <= n == nums.length <= 105
1 <= nums[i] <= 109
Solutions
Solution 1: Enumeration
We assume that all elements eventually become $x$, and $x$ must be an element in the array.
The number $x$ can expand one bit to the left and right every second. If there are multiple identical $x$, then the time required to expand the entire array depends on the maximum distance between two adjacent $x$.
Therefore, we enumerate each element as the final $x$, calculate the maximum distance $t$ between two adjacent elements in each $x$, then the final answer is $\min\limits_{x \in nums} \left\lfloor \frac{t}{2} \right\rfloor$.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array.
-
class Solution { public int minimumSeconds(List<Integer> nums) { Map<Integer, List<Integer>> d = new HashMap<>(); int n = nums.size(); for (int i = 0; i < n; ++i) { d.computeIfAbsent(nums.get(i), k -> new ArrayList<>()).add(i); } int ans = 1 << 30; for (List<Integer> idx : d.values()) { int m = idx.size(); int t = idx.get(0) + n - idx.get(m - 1); for (int i = 1; i < m; ++i) { t = Math.max(t, idx.get(i) - idx.get(i - 1)); } ans = Math.min(ans, t / 2); } return ans; } }
-
class Solution { public: int minimumSeconds(vector<int>& nums) { unordered_map<int, vector<int>> d; int n = nums.size(); for (int i = 0; i < n; ++i) { d[nums[i]].push_back(i); } int ans = 1 << 30; for (auto& [_, idx] : d) { int m = idx.size(); int t = idx[0] + n - idx[m - 1]; for (int i = 1; i < m; ++i) { t = max(t, idx[i] - idx[i - 1]); } ans = min(ans, t / 2); } return ans; } };
-
class Solution: def minimumSeconds(self, nums: List[int]) -> int: d = defaultdict(list) for i, x in enumerate(nums): d[x].append(i) ans = inf n = len(nums) for idx in d.values(): t = idx[0] + n - idx[-1] for i, j in pairwise(idx): t = max(t, j - i) ans = min(ans, t // 2) return ans
-
func minimumSeconds(nums []int) int { d := map[int][]int{} for i, x := range nums { d[x] = append(d[x], i) } ans := 1 << 30 n := len(nums) for _, idx := range d { m := len(idx) t := idx[0] + n - idx[m-1] for i := 1; i < m; i++ { t = max(t, idx[i]-idx[i-1]) } ans = min(ans, t/2) } return ans }
-
function minimumSeconds(nums: number[]): number { const d: Map<number, number[]> = new Map(); const n = nums.length; for (let i = 0; i < n; ++i) { if (!d.has(nums[i])) { d.set(nums[i], []); } d.get(nums[i])!.push(i); } let ans = 1 << 30; for (const [_, idx] of d) { const m = idx.length; let t = idx[0] + n - idx[m - 1]; for (let i = 1; i < m; ++i) { t = Math.max(t, idx[i] - idx[i - 1]); } ans = Math.min(ans, t >> 1); } return ans; }