Welcome to Subscribe On Youtube
2762. Continuous Subarrays
Description
You are given a 0-indexed integer array nums
. A subarray of nums
is called continuous if:
- Let
i
,i + 1
, ...,j
be the indices in the subarray. Then, for each pair of indicesi <= i1, i2 <= j
,0 <= |nums[i1] - nums[i2]| <= 2
.
Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [5,4,2,4] Output: 8 Explanation: Continuous subarray of size 1: [5], [4], [2], [4]. Continuous subarray of size 2: [5,4], [4,2], [2,4]. Continuous subarray of size 3: [4,2,4]. Thereare no subarrys of size 4. Total continuous subarrays = 4 + 3 + 1 = 8. It can be shown that there are no more continuous subarrays.
Example 2:
Input: nums = [1,2,3] Output: 6 Explanation: Continuous subarray of size 1: [1], [2], [3]. Continuous subarray of size 2: [1,2], [2,3]. Continuous subarray of size 3: [1,2,3]. Total continuous subarrays = 3 + 2 + 1 = 6.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
Solution 1: Ordered List + Two Pointers
We can use two pointers, $i$ and $j$, to maintain the left and right endpoints of the current subarray, and use an ordered list to maintain all elements in the current subarray.
Iterate through the array $nums$. For the current number $nums[i]$ we’re iterating over, we add it to the ordered list. If the difference between the maximum and minimum values in the ordered list is greater than $2$, we then loop to move the pointer $i$ to the right, continuously removing $nums[i]$ from the ordered list, until the list is empty or the maximum difference between elements in the ordered list is not greater than $2$. At this point, the number of uninterrupted subarrays is $j - i + 1$, which we add to the answer.
After the iteration, return the answer.
The time complexity is $O(n \times \log n)$ and the space complexity is $O(n)$, where $n$ is the length of the array $nums$.
-
class Solution { public long continuousSubarrays(int[] nums) { long ans = 0; int i = 0, n = nums.length; TreeMap<Integer, Integer> tm = new TreeMap<>(); for (int j = 0; j < n; ++j) { tm.merge(nums[j], 1, Integer::sum); while (tm.lastEntry().getKey() - tm.firstEntry().getKey() > 2) { tm.merge(nums[i], -1, Integer::sum); if (tm.get(nums[i]) == 0) { tm.remove(nums[i]); } ++i; } ans += j - i + 1; } return ans; } }
-
class Solution { public: long long continuousSubarrays(vector<int>& nums) { long long ans = 0; int i = 0, n = nums.size(); multiset<int> s; for (int j = 0; j < n; ++j) { s.insert(nums[j]); while (*s.rbegin() - *s.begin() > 2) { s.erase(s.find(nums[i++])); } ans += j - i + 1; } return ans; } };
-
from sortedcontainers import SortedList class Solution: def continuousSubarrays(self, nums: List[int]) -> int: ans = i = 0 sl = SortedList() for x in nums: sl.add(x) while sl[-1] - sl[0] > 2: sl.remove(nums[i]) i += 1 ans += len(sl) return ans
-
func continuousSubarrays(nums []int) (ans int64) { i := 0 tm := treemap.NewWithIntComparator() for j, x := range nums { if v, ok := tm.Get(x); ok { tm.Put(x, v.(int)+1) } else { tm.Put(x, 1) } for { a, _ := tm.Min() b, _ := tm.Max() if b.(int)-a.(int) > 2 { if v, _ := tm.Get(nums[i]); v.(int) == 1 { tm.Remove(nums[i]) } else { tm.Put(nums[i], v.(int)-1) } i++ } else { break } } ans += int64(j - i + 1) } return }