Welcome to Subscribe On Youtube

2763. Sum of Imbalance Numbers of All Subarrays

Description

The imbalance number of a 0-indexed integer array arr of length n is defined as the number of indices in sarr = sorted(arr) such that:

  • 0 <= i < n - 1, and
  • sarr[i+1] - sarr[i] > 1

Here, sorted(arr) is the function that returns the sorted version of arr.

Given a 0-indexed integer array nums, return the sum of imbalance numbers of all its subarrays.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [2,3,1,4]
Output: 3
Explanation: There are 3 subarrays with non-zero imbalance numbers:
- Subarray [3, 1] with an imbalance number of 1.
- Subarray [3, 1, 4] with an imbalance number of 1.
- Subarray [1, 4] with an imbalance number of 1.
The imbalance number of all other subarrays is 0. Hence, the sum of imbalance numbers of all the subarrays of nums is 3. 

Example 2:

Input: nums = [1,3,3,3,5]
Output: 8
Explanation: There are 7 subarrays with non-zero imbalance numbers:
- Subarray [1, 3] with an imbalance number of 1.
- Subarray [1, 3, 3] with an imbalance number of 1.
- Subarray [1, 3, 3, 3] with an imbalance number of 1.
- Subarray [1, 3, 3, 3, 5] with an imbalance number of 2. 
- Subarray [3, 3, 3, 5] with an imbalance number of 1. 
- Subarray [3, 3, 5] with an imbalance number of 1.
- Subarray [3, 5] with an imbalance number of 1.
The imbalance number of all other subarrays is 0. Hence, the sum of imbalance numbers of all the subarrays of nums is 8. 

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= nums.length

Solutions

Solution 1: Enumeration + Ordered Set

We can first enumerate the left endpoint $i$ of the subarray. For each $i$, we enumerate the right endpoint $j$ of the subarray from small to large, and maintain all the elements in the current subarray with an ordered list. We also use a variable $cnt$ to maintain the unbalanced number of the current subarray.

For each number $nums[j]$, we find the first element $nums[k]$ in the ordered list that is greater than or equal to $nums[j]$, and the last element $nums[h]$ that is less than $nums[j]$:

  • If $nums[k]$ exists, and the difference between $nums[k]$ and $nums[j]$ is more than $1$, the unbalanced number increases by $1$;
  • If $nums[h]$ exists, and the difference between $nums[j]$ and $nums[h]$ is more than $1$, the unbalanced number increases by $1$;
  • If both $nums[k]$ and $nums[h]$ exist, then inserting the element $nums[j]$ between $nums[h]$ and $nums[k]$ will reduce the unbalanced number by $1$.

Then, we add the unbalanced number of the current subarray to the answer, and continue the iteration until we finish iterating over all subarrays.

The time complexity is $O(n^2 \times \log n)$ and the space complexity is $O(n)$, where $n$ is the length of the array $nums$.

  • class Solution {
        public int sumImbalanceNumbers(int[] nums) {
            int n = nums.length;
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                TreeMap<Integer, Integer> tm = new TreeMap<>();
                int cnt = 0;
                for (int j = i; j < n; ++j) {
                    Integer k = tm.ceilingKey(nums[j]);
                    if (k != null && k - nums[j] > 1) {
                        ++cnt;
                    }
                    Integer h = tm.floorKey(nums[j]);
                    if (h != null && nums[j] - h > 1) {
                        ++cnt;
                    }
                    if (h != null && k != null && k - h > 1) {
                        --cnt;
                    }
                    tm.merge(nums[j], 1, Integer::sum);
                    ans += cnt;
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int sumImbalanceNumbers(vector<int>& nums) {
            int n = nums.size();
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                multiset<int> s;
                int cnt = 0;
                for (int j = i; j < n; ++j) {
                    auto it = s.lower_bound(nums[j]);
                    if (it != s.end() && *it - nums[j] > 1) {
                        ++cnt;
                    }
                    if (it != s.begin() && nums[j] - *prev(it) > 1) {
                        ++cnt;
                    }
                    if (it != s.end() && it != s.begin() && *it - *prev(it) > 1) {
                        --cnt;
                    }
                    s.insert(nums[j]);
                    ans += cnt;
                }
            }
            return ans;
        }
    };
    
  • from sortedcontainers import SortedList
    
    
    class Solution:
        def sumImbalanceNumbers(self, nums: List[int]) -> int:
            n = len(nums)
            ans = 0
            for i in range(n):
                sl = SortedList()
                cnt = 0
                for j in range(i, n):
                    k = sl.bisect_left(nums[j])
                    h = k - 1
                    if h >= 0 and nums[j] - sl[h] > 1:
                        cnt += 1
                    if k < len(sl) and sl[k] - nums[j] > 1:
                        cnt += 1
                    if h >= 0 and k < len(sl) and sl[k] - sl[h] > 1:
                        cnt -= 1
                    sl.add(nums[j])
                    ans += cnt
            return ans
    
    

All Problems

All Solutions