Welcome to Subscribe On Youtube
2741. Special Permutations
Description
You are given a 0-indexed integer array nums
containing n
distinct positive integers. A permutation of nums
is called special if:
- For all indexes
0 <= i < n - 1
, eithernums[i] % nums[i+1] == 0
ornums[i+1] % nums[i] == 0
.
Return the total number of special permutations. As the answer could be large, return it modulo 109 + 7
.
Example 1:
Input: nums = [2,3,6] Output: 2 Explanation: [3,6,2] and [2,6,3] are the two special permutations of nums.
Example 2:
Input: nums = [1,4,3] Output: 2 Explanation: [3,1,4] and [4,1,3] are the two special permutations of nums.
Constraints:
2 <= nums.length <= 14
1 <= nums[i] <= 109
Solutions
-
class Solution { public int specialPerm(int[] nums) { final int mod = (int) 1e9 + 7; int n = nums.length; int m = 1 << n; int[][] f = new int[m][n]; for (int i = 1; i < m; ++i) { for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { int ii = i ^ (1 << j); if (ii == 0) { f[i][j] = 1; continue; } for (int k = 0; k < n; ++k) { if (nums[j] % nums[k] == 0 || nums[k] % nums[j] == 0) { f[i][j] = (f[i][j] + f[ii][k]) % mod; } } } } } int ans = 0; for (int x : f[m - 1]) { ans = (ans + x) % mod; } return ans; } }
-
class Solution { public: int specialPerm(vector<int>& nums) { const int mod = 1e9 + 7; int n = nums.size(); int m = 1 << n; int f[m][n]; memset(f, 0, sizeof(f)); for (int i = 1; i < m; ++i) { for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { int ii = i ^ (1 << j); if (ii == 0) { f[i][j] = 1; continue; } for (int k = 0; k < n; ++k) { if (nums[j] % nums[k] == 0 || nums[k] % nums[j] == 0) { f[i][j] = (f[i][j] + f[ii][k]) % mod; } } } } } int ans = 0; for (int x : f[m - 1]) { ans = (ans + x) % mod; } return ans; } };
-
class Solution: def specialPerm(self, nums: List[int]) -> int: mod = 10**9 + 7 n = len(nums) m = 1 << n f = [[0] * n for _ in range(m)] for i in range(1, m): for j, x in enumerate(nums): if i >> j & 1: ii = i ^ (1 << j) if ii == 0: f[i][j] = 1 continue for k, y in enumerate(nums): if x % y == 0 or y % x == 0: f[i][j] = (f[i][j] + f[ii][k]) % mod return sum(f[-1]) % mod
-
func specialPerm(nums []int) (ans int) { const mod int = 1e9 + 7 n := len(nums) m := 1 << n f := make([][]int, m) for i := range f { f[i] = make([]int, n) } for i := 1; i < m; i++ { for j, x := range nums { if i>>j&1 == 1 { ii := i ^ (1 << j) if ii == 0 { f[i][j] = 1 continue } for k, y := range nums { if x%y == 0 || y%x == 0 { f[i][j] = (f[i][j] + f[ii][k]) % mod } } } } } for _, x := range f[m-1] { ans = (ans + x) % mod } return }
-
function specialPerm(nums: number[]): number { const mod = 1e9 + 7; const n = nums.length; const m = 1 << n; const f = Array.from({ length: m }, () => Array(n).fill(0)); for (let i = 1; i < m; ++i) { for (let j = 0; j < n; ++j) { if (((i >> j) & 1) === 1) { const ii = i ^ (1 << j); if (ii === 0) { f[i][j] = 1; continue; } for (let k = 0; k < n; ++k) { if (nums[j] % nums[k] === 0 || nums[k] % nums[j] === 0) { f[i][j] = (f[i][j] + f[ii][k]) % mod; } } } } } return f[m - 1].reduce((acc, x) => (acc + x) % mod); }
-
impl Solution { pub fn special_perm(nums: Vec<i32>) -> i32 { const MOD: i32 = 1_000_000_007; let n = nums.len(); let m = 1 << n; let mut f = vec![vec![0; n]; m]; for i in 1..m { for j in 0..n { if (i >> j) & 1 == 1 { let ii = i ^ (1 << j); if ii == 0 { f[i][j] = 1; continue; } for k in 0..n { if nums[j] % nums[k] == 0 || nums[k] % nums[j] == 0 { f[i][j] = (f[i][j] + f[ii][k]) % MOD; } } } } } let mut ans = 0; for &x in &f[m - 1] { ans = (ans + x) % MOD; } ans } }