Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2493.html
2493. Divide Nodes Into the Maximum Number of Groups
- Difficulty: Hard.
- Related Topics: .
- Similar Questions: Binary Tree Level Order Traversal, Is Graph Bipartite?.
Problem
You are given a positive integer n
representing the number of nodes in an undirected graph. The nodes are labeled from 1
to n
.
You are also given a 2D integer array edges
, where edges[i] = [ai, bi]
indicates that there is a bidirectional edge between nodes ai
and bi
. Notice that the given graph may be disconnected.
Divide the nodes of the graph into m
groups (1-indexed) such that:
-
Each node in the graph belongs to exactly one group.
-
For every pair of nodes in the graph that are connected by an edge
[ai, bi]
, ifai
belongs to the group with indexx
, andbi
belongs to the group with indexy
, then|y - x| = 1
.
Return the maximum number of groups (i.e., maximum **m
) into which you can divide the nodes. Return -1
**if it is impossible to group the nodes with the given conditions.
Example 1:
Input: n = 6, edges = [[1,2],[1,4],[1,5],[2,6],[2,3],[4,6]]
Output: 4
Explanation: As shown in the image we:
- Add node 5 to the first group.
- Add node 1 to the second group.
- Add nodes 2 and 4 to the third group.
- Add nodes 3 and 6 to the fourth group.
We can see that every edge is satisfied.
It can be shown that that if we create a fifth group and move any node from the third or fourth group to it, at least on of the edges will not be satisfied.
Example 2:
Input: n = 3, edges = [[1,2],[2,3],[3,1]]
Output: -1
Explanation: If we add node 1 to the first group, node 2 to the second group, and node 3 to the third group to satisfy the first two edges, we can see that the third edge will not be satisfied.
It can be shown that no grouping is possible.
Constraints:
-
1 <= n <= 500
-
1 <= edges.length <= 104
-
edges[i].length == 2
-
1 <= ai, bi <= n
-
ai != bi
-
There is at most one edge between any pair of vertices.
Solution (Java, C++, Python)
-
class Solution { private List<Integer>[] g; private List<Integer> arr = new ArrayList<>(); private boolean[] vis; private int n; public int magnificentSets(int n, int[][] edges) { g = new List[n + 1]; this.n = n; Arrays.setAll(g, k -> new ArrayList<>()); for (var e : edges) { int a = e[0], b = e[1]; g[a].add(b); g[b].add(a); } vis = new boolean[n + 1]; int ans = 0; for (int i = 1; i <= n; ++i) { if (!vis[i]) { dfs(i); int t = -1; for (int v : arr) { t = Math.max(t, bfs(v)); } if (t == -1) { return -1; } ans += t; arr.clear(); } } return ans; } private int bfs(int k) { int[] dist = new int[n + 1]; Arrays.fill(dist, 1 << 30); dist[k] = 1; Deque<Integer> q = new ArrayDeque<>(); q.offer(k); int ans = 1; while (!q.isEmpty()) { int i = q.pollFirst(); for (int j : g[i]) { if (dist[j] == 1 << 30) { dist[j] = dist[i] + 1; ans = dist[j]; q.offer(j); } } } for (int i : arr) { if (dist[i] == 1 << 30) { dist[i] = ++ans; } } for (int i : arr) { for (int j : g[i]) { if (Math.abs(dist[i] - dist[j]) != 1) { return -1; } } } return ans; } private void dfs(int i) { arr.add(i); vis[i] = true; for (int j : g[i]) { if (!vis[j]) { dfs(j); } } } }
-
class Solution { public: int magnificentSets(int n, vector<vector<int>>& edges) { vector<vector<int>> g(n + 1); for (auto& e : edges) { int a = e[0], b = e[1]; g[a].emplace_back(b); g[b].emplace_back(a); } vector<int> arr; bool vis[n + 1]; memset(vis, 0, sizeof vis); int ans = 0; function<void(int)> dfs = [&](int i) { arr.emplace_back(i); vis[i] = true; for (int& j : g[i]) { if (!vis[j]) { dfs(j); } } }; auto bfs = [&](int k) { int ans = 1; int dist[n + 1]; memset(dist, 0x3f, sizeof dist); dist[k] = 1; queue<int> q{ {k} }; while (!q.empty()) { int i = q.front(); q.pop(); for (int& j : g[i]) { if (dist[j] == 0x3f3f3f3f) { ans = dist[j] = dist[i] + 1; q.push(j); } } } for (int& i : arr) { if (dist[i] == 0x3f3f3f3f) { dist[i] = ++ans; } } for (int& i : arr) { for (int& j : g[i]) { if (abs(dist[i] - dist[j]) != 1) { return -1; } } } return ans; }; for (int i = 1; i <= n; ++i) { if (!vis[i]) { dfs(i); int t = -1; for (int& v : arr) t = max(t, bfs(v)); if (t == -1) return -1; ans += t; arr.clear(); } } return ans; } };
-
class Solution: def magnificentSets(self, n: int, edges: List[List[int]]) -> int: def dfs(i): arr.append(i) vis[i] = True for j in g[i]: if not vis[j]: dfs(j) def bfs(i): ans = 1 dist = [inf] * (n + 1) dist[i] = 1 q = deque([i]) while q: i = q.popleft() for j in g[i]: if dist[j] == inf: ans = dist[j] = dist[i] + 1 q.append(j) for i in arr: if dist[i] == inf: ans += 1 dist[i] = ans for i in arr: for j in g[i]: if abs(dist[i] - dist[j]) != 1: return -1 return ans g = defaultdict(list) for a, b in edges: g[a].append(b) g[b].append(a) vis = [False] * (n + 1) ans = 0 for i in range(1, n + 1): if not vis[i]: arr = [] dfs(i) t = max(bfs(v) for v in arr) if t == -1: return -1 ans += t return ans
-
func magnificentSets(n int, edges [][]int) int { g := make([][]int, n+1) for _, e := range edges { a, b := e[0], e[1] g[a] = append(g[a], b) g[b] = append(g[b], a) } arr := []int{} vis := make([]bool, n+1) ans := 0 var dfs func(int) dfs = func(i int) { arr = append(arr, i) vis[i] = true for _, j := range g[i] { if !vis[j] { dfs(j) } } } bfs := func(k int) int { ans := 1 dist := make([]int, n+1) for i := range dist { dist[i] = 1 << 30 } q := []int{k} dist[k] = 1 for len(q) > 0 { i := q[0] q = q[1:] for _, j := range g[i] { if dist[j] == 1<<30 { dist[j] = dist[i] + 1 ans = dist[j] q = append(q, j) } } } for _, i := range arr { if dist[i] == 1<<30 { ans++ dist[i] = ans } } for _, i := range arr { for _, j := range g[i] { if abs(dist[i]-dist[j]) != 1 { return -1 } } } return ans } for i := 1; i <= n; i++ { if !vis[i] { dfs(i) t := -1 for _, v := range arr { t = max(t, bfs(v)) } if t == -1 { return -1 } ans += t arr = []int{} } } return ans } func max(a, b int) int { if a > b { return a } return b } func abs(x int) int { if x < 0 { return -x } return x }
-
var magnificentSets = function (n, edges) { const graph = Array.from({ length: n + 1 }, () => new Set()); for (const [u, v] of edges) { graph[u].add(v); graph[v].add(u); } const hash = new Map(); // 2. BFS for (let i = 1; i <= n; i++) { let queue = [i]; const dis = Array(n + 1).fill(0); dis[i] = 1; let mx = 1, mn = n; while (queue.length) { let next = []; for (let u of queue) { mn = Math.min(mn, u); for (const v of graph[u]) { if (!dis[v]) { dis[v] = dis[u] + 1; mx = Math.max(mx, dis[v]); next.push(v); } if (Math.abs(dis[u] - dis[v]) != 1) { return -1; } } } queue = next; } hash.set(mn, Math.max(mx, hash.get(mn) || 0)); } let ans = 0; for (const [u, v] of hash) { ans += v; } return ans; };
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).