Welcome to Subscribe On Youtube
2574. Left and Right Sum Differences
Description
Given a 0-indexed integer array nums
, find a 0-indexed integer array answer
where:
answer.length == nums.length
.answer[i] = |leftSum[i] - rightSum[i]|
.
Where:
leftSum[i]
is the sum of elements to the left of the indexi
in the arraynums
. If there is no such element,leftSum[i] = 0
.rightSum[i]
is the sum of elements to the right of the indexi
in the arraynums
. If there is no such element,rightSum[i] = 0
.
Return the array answer
.
Example 1:
Input: nums = [10,4,8,3] Output: [15,1,11,22] Explanation: The array leftSum is [0,10,14,22] and the array rightSum is [15,11,3,0]. The array answer is [|0 - 15|,|10 - 11|,|14 - 3|,|22 - 0|] = [15,1,11,22].
Example 2:
Input: nums = [1] Output: [0] Explanation: The array leftSum is [0] and the array rightSum is [0]. The array answer is [|0 - 0|] = [0].
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 105
Solutions
Solution 1: Prefix Sum
We define a variable $left$ to represent the sum of the elements to the left of index $i$ in the array nums
, and a variable $right$ to represent the sum of the elements to the right of index $i$ in the array nums
. Initially, $left = 0$, $right = \sum_{i = 0}^{n - 1} nums[i]$.
We iterate over the array nums
. For the current number $x$ we are iterating over, we update $right = right - x$. At this point, $left$ and $right$ represent the sum of the elements to the left and right of index $i$ in the array nums
, respectively. We add the absolute difference between $left$ and $right$ to the answer array ans
, and then update $left = left + x$.
After the iteration is complete, we return the answer array ans
.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Where $n$ is the length of the array nums
.
-
class Solution { public int[] leftRigthDifference(int[] nums) { int left = 0, right = Arrays.stream(nums).sum(); int n = nums.length; int[] ans = new int[n]; for (int i = 0; i < n; ++i) { right -= nums[i]; ans[i] = Math.abs(left - right); left += nums[i]; } return ans; } }
-
class Solution { public: vector<int> leftRigthDifference(vector<int>& nums) { int left = 0, right = accumulate(nums.begin(), nums.end(), 0); vector<int> ans; for (int& x : nums) { right -= x; ans.push_back(abs(left - right)); left += x; } return ans; } };
-
class Solution: def leftRigthDifference(self, nums: List[int]) -> List[int]: left, right = 0, sum(nums) ans = [] for x in nums: right -= x ans.append(abs(left - right)) left += x return ans
-
func leftRigthDifference(nums []int) (ans []int) { var left, right int for _, x := range nums { right += x } for _, x := range nums { right -= x ans = append(ans, abs(left-right)) left += x } return } func abs(x int) int { if x < 0 { return -x } return x }
-
function leftRigthDifference(nums: number[]): number[] { let left = 0, right = nums.reduce((a, b) => a + b); const ans: number[] = []; for (const x of nums) { right -= x; ans.push(Math.abs(left - right)); left += x; } return ans; }
-
impl Solution { pub fn left_rigth_difference(nums: Vec<i32>) -> Vec<i32> { let mut left = 0; let mut right = nums.iter().sum::<i32>(); nums.iter() .map(|v| { right -= v; let res = (left - right).abs(); left += v; res }) .collect() } }